Drożdżowe systemy ekspresyjne

Slides:



Advertisements
Podobne prezentacje
W dniu uczestniczyłyśmy w Śląskiej Nocy Naukowców w Akademii Techniczno - Humanistycznej w Bielsku – Białej.  Brałyśmy udział w wykładzie popularnonaukowym.
Advertisements

Biotechnologia zespół technologii, służących do wytwarzania użytecznych, żywych organizmów lub substancji pochodzących z organizmów lub ich części. Inaczej.
Proponowane tematy prac inżynierskich – rok akademicki 2012/2013
WEKTORY WYSPECJALIZOWANE
Mikrobiologia Przemysłowa
Sterowanie metabolizmem
POZYSKIWAMNIE SZCZEPÓW MIKROORGANIZMÓW O ZNACZENIU PRZEMYSŁOWYM
Technologie fermentacyjne biosyntezy metabolitów wtórnych
Identyfikacja taksonomiczna mikroorganizmów
Doskonalenie cech produkcyjnych mikroorganizmów
Dobre polskie praktyki – biomasa
RIBOSOME DISPLAY Ania Grochot.
Czy mikroby mogą być dla nas przydatne?!?
Wykład 9 5. Bioenergetyka 5.1. Glikoliza
WIRUSY.
Szczepionki zawierające rekombinantowe antygeny białkowe
Mikrobiologia przemysłowa
Biotechnologiczne metody wytwarzania chemikaliów
Projektowanie metabolizmu
Znajomość metabolizmu podstawą planowania procesu biotechnologicznego
Fermentacyjne technologie
Znajomość metabolizmu podstawą planowania procesu biotechnologicznego
Wykorzystanie surowców odpadowych do otrzymywania
Drożdżowe systemy ekspresyjne
Oddziaływanie pomiędzy modyfikowanymi cyklodekstrynami a L-tryptofan indol liazą. Praca magisterska wykonana w Pracowni Węglowodanów,
Ekstrakcja – wiadomości wstępne
Surowce do produkcji piwa Słód, chmiel, drożdże, woda
Uniwersytet Warszawski
DZIEDZICZENIE POZAJĄDROWE
POZYSKIWANIE FUNDUSZY UNIJNYCH PRZEZ MŚP
Temat lekcji: Wykrywamy związki organiczne w pokarmach.
Szybkie Metody Analizy Mikrobiologicznej Żywności
Produkcja piwa.
ODNAWIALNE ŹRÓDŁA ENERGII
Karolina Makieła dr hab. Piotr Jonczyk
Proponowane tematy prac magisterskich i licencjackich
Podsumowanie – wykład 3 1. Technologia DNA
Fosfo-dihydroksyaceton NAD H2 NAD H2 Aldehyd 3-fosfoglicerynowy
dr n. med. inż. Katarzyna Pytkowska1 prof. nzw dr inż. Jacek Arct1
mgr inż. Karolina Makieła dr hab. Piotr Jonczyk
BIOPALIWA.
Wykorzystanie surowców odpadowych do otrzymywania
ODDYCHANIE FERMENTACJA ALKOHOLOWA ODDYCHANIE TLENOWE FERMENTACJA
Metabolizm.
Instytut Biochemii i Biofizyki PAN
Podsumowanie Wirusy jako wektory
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
„Bioenergia w rolnictwie” Podstawowe założenia regulacji dotyczących energetyki odnawialnej - projekt ustawy o OZE Maciej Kapalski Wydział Odnawialnych.
Biotechnologia.
POLIMERAZY RNA Biorą udział w syntezie RNA na matrycy DNA- transkrypcji Początek i koniec transkrypcji regulują sekwencje DNA i wiążące się do nich białka.
Regulacja ekspresji genu
Materiał edukacyjny wytworzony w ramach projektu „Scholaris - portal wiedzy dla nauczycieli” współfinansowanego przez Unię Europejską w ramach Europejskiego.
Alkohole.
Chyba wiem, co jem?.
Burak cukrowy alternatywnym surowcem do pozyskiwania bioproduktów Jan Iciek Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności.
Integracja metabolizmu Glukozo- 6 -fosforan Pirogronian AcetyloCoA Kluczowe związki w metabolizmie.
Wpływ składników żywności na organizm
Stanisław Wawro, Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności Instytut Chemicznej Technologii Żywności Zakład Cukrownictwa.
Skład: Produkt wieprzowy, homogenizowany, wędzony, parzony, bez osłonki Skład: Mięso wieprzowe z szynki 93%, sól, białko wieprzowe, aromaty, przyprawy.
Innowacyjne technologie i dodatki jako element podnoszenia atrakcyjności oferty przemysłu mleczarskiego Konferencja z cyklu „Nauka – praktyce”, 31 maja.
SKŁADNIKI ŻYWNOSCI. Białka Białka pełnią funkcje budulcowe (służą do budowy tkanek)
Ocena wartości nawozowej kompostu keratynowego uzyskanego z udziałem szczepionki mikroorganizmów Anna Rodziewicz, Wojciech Łaba, Justyna Sobolczyk, Anna.
Wykonała: Barbara Minczewska
Biotechnologia tradycyjna. Czym jest biotechnologia?  Biotechnologia to interdyscyplinarna dziedzina nauki zajmująca się wykorzystaniem procesów biologicznych.
WĘGLOWODANY CZĘŚĆ II.
Biosynteza białka-translacja
Materiał edukacyjny wytworzony w ramach projektu „Scholaris - portal wiedzy dla nauczycieli” współfinansowanego przez Unię Europejską w ramach Europejskiego.
Chemia w organizmie człowieka
Chemia w kuchni Julia Mroszczyk kl. Ia.
Zapis prezentacji:

Drożdżowe systemy ekspresyjne Dr inż. Marta Wanarska Katedra Mikrobiologii Wydział Chemiczny Politechnika Gdańska

Zastosowanie drożdżowych systemów ekspresyjnych Produkcja białek wirusowych prokariotycznych eukariotycznych których wytwarzanie na innej drodze jest trudne, niebezpieczne, ekonomicznie nieopłacalne Produkcja metabolitów niebiałkowych alkoholi kwasów organicznych cukrów z wykorzystaniem substratów odpadowych (serwatka, glicerol, hydrolizaty biomasy roślinnej)

Drożdżowe systemy ekspresyjne Charakterystyka drożdży jako gospodarzy ekspresyjnych dobrze scharakteryzowane łatwość przeprowadzenia manipulacji genetycznych szybki wzrost i produkcja dużej ilości biomasy wydajne systemy ekspresyjne możliwość produkcji białek wewnątrz- i zewnątrzkomórkowo trwałe rekombinanty – integracja plazmidów ekspresyjnych z genomem gospodarza modyfikacje posttranslacyjne białek tworzenie mostków disiarczkowych N- i O-glikozylacja przyłączanie kwasów tłuszczowych proteolityczne dojrzewanie białek możliwość produkcji białek fuzyjnych posiadających domeny ułatwiające oczyszczanie i detekcję białek lub zwiększające immunogenność

Drożdżowe systemy ekspresyjne Gatunki drożdży stosowane do produkcji heterologicznych białek Saccharomyces cerevisiae Pichia pastoris Pichia methanolica Hansenula polymorpha Kluyveromyces lactis Yarrowia lipolytica Arxula adeninivorans Schizosaccharomyces pombe

Saccharomyces cerevisiae Niski poziom produkcji i sekrecji białek Niestabilność plazmidów rekombinantowych Hiperglikozylacja białek Wąski zakres metabolizowanych źródeł węgla

Optymalna temperatura wzrostu Pichia pastoris i Hansenula polymorpha - podstawowa charakterystyka biochemiczna P. pastoris H. polymorpha Źródła węgla i energii glukoza glicerol metanol Źródła azotu jony amonowe sole kwasu azotowego (V) Optymalna temperatura wzrostu 30 °C 37-43 °C

Metabolizm metanolu 1 – oksydaza alkoholowa, 2 – katalaza, 3 – syntaza dihydroksyacetonu, 4 - dehydrogenaza formaldehydowa, 5 – dehydrogenaza mrówczanowa, 6 - kinaza dihydroksyacetonu, 7- aldolaza fruktozo-1,6-bisfosforanu, 8 – fosfataza fruktozo- 1,6-bisfosforanu

Arxula adeninivorans – podstawowa charakterystyka biochemiczna Źródła węgla i energii szeroka gama cukrów, w tym skrobia alkohole (z wyłączeniem metanolu) i diole kwasy karboksylowe i dikarboksylowe n-alkany pierwszorzędowe alkiloaminy Źródła azotu jony amonowe sole kwasu azotowego (V)

Arxula adeninivorans – podstawowa charakterystyka biochemiczna Termotolerancyjność zdolność do wzrostu w zakresie temperatury 30-48 °C Temperaturozależny dimorfizm wzrost w postaci pojedynczych pączkujących komórek w temp. do 42 °C wzrost w postaci strzępek w temperaturze powyżej 42 °C W postaci strzępek wykazuje wyższy poziom sekrecji białek Różny wzór glikozylacji białek w zależności od formy morfologicznej N-glikozylacja w obu typach komórek O-glikozylacja tylko w pojedynczych komórkach

Formy morfologiczne Arxula adeninivorans A. adeninivorans LS3 hodowana w 30 °C A. adeninivorans LS3 hodowana w 45 °C

Yarrowia lipolytica – podstawowa charakterystyka biochemiczna Źródła węgla i energii glukoza glicerol etanol octany n-alkany kwasy tłuszczowe Źródła azotu jony amonowe Dimorfizm zależny od warunków środowiska tworzy strzępki w obecności N-acetyloglukozaminy jako jedynego źródła węgla w pożywce

Yarrowia lipolytica – podstawowa charakterystyka biochemiczna W obecności n-alkanów wydziela kwas cytrynowy i izocytrynowy W obecności n-alkanów i przy braku tiaminy wydziela α-ketoglutaran Produkuje zewnątrzkomórkowo znaczne ilości białek alkaliczna proteaza kwaśna proteaza RNA-za kwaśna fosfataza lipaza esteraza Optymalna temperatura wzrostu 30-34 °C

Drożdżowe systemy ekspresyjne Szczepy gospodarzy ekspresyjnych Wektory ekspresyjne bakteryjne ori replikacji bakteryjny marker selekcyjny sekwencja umożliwiająca utrzymanie się wektora w komórce drożdży drożdżowy marker selekcyjny drożdżowy promotor i terminator transkrypcji AmpR PTEF1 Drożdżowy wektor ekspresyjny PHO5t ColE1 ori 25S rDNA URA3

Szczepy ekspresyjne Pichia pastoris Fenotyp Uwagi X-33, Y-11430 szczep dziki Selekcja antybiotykowa GS115 His-, Mut+ Selekcja na podłożu bez histydyny; szybki metabolizm metanolu KM71 His-, Muts Selekcja na podłożu bez histydyny; wolny metabolizm metanolu SMD1168 His-, Pep4-, Mut+ Selekcja na podłożu bez histydyny; brak aktywności proteazy A; szybki metabolizm metanolu JC300 Ade-, Arg-, His- Selekcja na podłożu bez adeniny, argininy i histydyny JC308 Ade-, Arg-, His-, Ura- Selekcja na podłożu bez adeniny, uracylu, histydyny i argininy

Szczepy ekspresyjne Hansenula polymorpha Fenotyp Uwagi DL-1, NCYC495, CBS4732 szczep dziki Selekcja antybiotykowa DL10 Leu-, Ura- Selekcja na podłożu bez leucyny i uracylu uDLB11 Leu-, Ura-, Pep4- Selekcja na podłożu bez leucyny i uracylu; brak aktywności proteazy A L1 Leu- Selekcja na podłożu bez leucyny A11 Ade- Selekcja na podłożu bez adeniny LR9 Ura- Selekcja na podłożu bez uracylu

Szczepy ekspresyjne Arxula adeninivorans Fenotyp Uwagi LS3 Szczep dziki Selekcja antybiotykowa 135 Adm- Tworzy strzępki w 30 °C; selekcja antybiotykowa G1211 Leu- Selekcja na podłożu bez leucyny G1212 Trp- Selekcja na podłożu bez tryptofanu

Szczepy ekspresyjne Yarrowia lipolytica Fenotyp Uwagi W29 Szczep dziki Selekcja antybiotykowa; selekcja na podłożu z sacharozą Po1d Leu-, Ura-, ΔAEP, Suc+ Selekcja na podłożu bez leucyny i uracylu; brak aktywności alkalicznej proteazy, zdolność do metabolizmu sacharozy Po1f Leu-, Ura-, ΔAEP, ΔAXP, Suc+ Selekcja na podłożu bez leucyny i uracylu; brak aktywności alkalicznej proteazy, brak aktywności kwaśnej proteazy, zdolność do metabolizmu sacharozy YLP21 Ura-, ΔAEP, ΔAXP, Suc+ Selekcja na podłożu bez uracylu; brak aktywności alkalicznej proteazy, brak aktywności kwaśnej proteazy, zdolność do metabolizmu sacharozy

Promotory transkrypcji P. pastoris Uwagi AOX1 (genu oksydazy alkoholowej) Indukowany metanolem; represja w obecności glukozy i glicerolu FLD1 (genu dehydrogenazy formaldehydowej) Indukowany metanolem i metyloaminą; represja w obecności glukozy i glicerolu PEX8 (genu kodującego białko tworzące matrix peroksysomów) Słaba aktywność w obecności glukozy; wzrost aktywności w obecności metanolu GAP (genu dehydrogenazy aldehydu 3-fosfoglicerynowego) Konstytutywny, aktywny w obecności glukozy i glicerolu YPT1 (genu GTPazy niezbędnej w sekrecji białek) Konstytutywny, aktywny w obecności glukozy i metanolu

Promotory transkrypcji H. polymorpha Uwagi MOX (genu oksydazy metanolowej) Indukowany metanolem; represja w obecności glukozy; aktywny w obecności glicerolu DHAS (genu syntazy dihydroksyacetonu) FMD (genu dehydrogenazy mrówczanowej) AMO (genu oksydazy aminowej) Indukowany metylo- i etyloaminą; represja w obecności jonów amonowych YNT1, YNI1, YNR1 (genów kodujących białka niezbędne w metabolizmie azotanów) Indukowane solami kwasu azotowego (V), represja w obecności jonów amonowych GAP (genu dehydrogenazy aldehydu 3-fosfoglicerynowego) Konstytutywny PMA1 (genu ATPazy błony cytoplazmatycznej)

Promotory transkrypcji A. adeninivorans Uwagi TEF1 (genu kodującego czynnik elongacji translacji EF-1α) Konstytutywny

Promotory transkrypcji Y. lipolytica Uwagi XPR2 (genu alkalicznej proteazy) Aktywny w pH >6 i w obecności dużej ilości peptonu hp4d (promotor hybrydowy – 4 UAS promotora XPR2 i TATA box promotora LEU2) Aktywny w fazie stacjonarnej hodowli ICL1 (genu liazy izocytrynianowej) Indukowany n-alkanami, kwasami tłuszczowymi, etanolem i octanem sodu; represja w obecności glukozy i glicerolu POX2 (genu oksydazy acylo-CoA) Indukowany n-alkanami i kwasami tłuszczowymi; represja w obecności glukozy i glicerolu POT1 (genu tiolazy 3-oksoacylo-CoA)

Drożdżowe markery selekcyjne P. pastoris geny oporności na antybiotyki gen oporności na zeocynę markery auksotroficzne gen HIS4 P. pastoris lub S. cerevisiae gen ARG4 S. cerevisiae gen URA3 P. pastoris gen ADE1 P. pastoris

Drożdżowe markery selekcyjne H. polymorpha geny oporności na antybiotyki gen oporności na zeocynę gen oporności na pleomycynę markery auksotroficzne gen LEU 1.1 H. polymorpha gen URA3 H. polymorpha gen ADE11 H. polymorpha gen LEU2 S. cerevisiae gen URA3 S. cerevisiae gen LEU2 C. albicans

Drożdżowe markery selekcyjne A. adeninivorans geny oporności na antybiotyki gen oporności na higromycynę B markery auksotroficzne gen LEU2 A. adeninivorans gen TRP1 A. adeninivorans gen TRP1 A. adeninivorans pod kontrolą krótkiego fragmentu promotora LEU2 A. adeninivorans

Drożdżowe markery selekcyjne Y. lipolytica geny oporności na antybiotyki gen oporności na pleomycynę gen SUC2 S. cerevisiae markery auksotroficzne gen LEU2 Y. lipolytica gen URA3 Y. lipolytica gen ADE1 Y. lipolytica

Sekwencje umożliwiające utrzymanie się wektora ekspresyjnego w komórce drożdży P. pastoris Sekwencje umożliwiające rekombinację homologiczną z genomem drożdży 5’ fragment promotora AOX1 5’ fragment promotora GAP gen HIS4 P. pastoris A. adeninivorans Sekwencje umożliwiające rekombinację homologiczną wektora z genomem drożdży sekwencja kodująca 25S rRNA A. adeninivorans

Sekwencje umożliwiające utrzymanie się wektora ekspresyjnego w komórce drożdży H. polymorpha Sekwencje umożliwiające rekombinację homologiczną wektora z genomem drożdży gen MOX H. polymorpha gen AMO H. polymorpha gen LEU2 S. cerevisiae gen URA3 S. cerevisiae Sekwencje umożliwiające autonomiczną replikację wektora w komórkach drożdży sekwencje ARS H. polymorpha

Sekwencje umożliwiające utrzymanie się wektora ekspresyjnego w komórce drożdży Y. lipolytica Sekwencje umożliwiające rekombinację homologiczną wektora z genomem drożdży terminator transkrypcji LEU2 terminator transkrypcji URA3 terminator transkrypcji XPR2 sekwencje kodujące rRNA sekwencje „zeta” (sekwencje LTR retrotranspozonu Ylt1) w szczepach niosących retrotranspozon Ylt1 Sekwencje umożliwiające rekombinację niehomologiczną wektora z genomem drożdży sekwencje „zeta” w szczepach nie niosących retrotranspozonu Ylt1 Sekwencje umożliwiające autonomiczną replikację wektora w komórkach drożdży sekwencje ARS Y. lipolytica

Zewnątrzkomórkowa produkcja białek

Zewnątrzkomórkowa produkcja białek Sekwencja sygnalna Pichia pastoris Hansenula polymorpha Arxula adeninivorans Yarrowia lipolytica obcego białka + α-faktora S. cerevisiae Kwaśnej fosfatazy P. pastoris Kwaśnej fosfatazy H. polymorpha Glukoamylazy S. ocidentalis Alkalicznej proteazy Y. lipolytica Lipazy Y. lipolytica

Zwiększenie poziomu sekrecji białek przez komórki drożdży Wprowadzenie do komórek drożdży dodatkowych genów kodujących białka opiekuńcze obecne w retikulum endoplazmatycznym Foldazy izomerazy disulfidowe Białka opiekuńcze kalneksyna kalretikulina

Kierowanie białek do peroksysomów Peroksysomy Zdolne do akumulacji dużej ilości białek Nie zawierają enzymów modyfikujących białka fosfokinaz glikozylaz proteaz Umożliwiają produkcję niezmodyfikowanych białek Sekwencja kierująca do peroksysomów -Ser-Lys-Leu-COOH peroksysomy H. polymorpha rosnąca w pożywce z metanolem

Produkcja białek w drożdżowych systemach ekspresji

Produkcja termostabilnej β-D-galaktozydazy Pyrococcus woesei w systemie ekspresji Pichia pastoris

Przemysłowe zastosowanie β-D-galaktozydazy Produkcja mleka o obniżonej zawartości laktozy Produkcja dietetycznych przetworów mlecznych Produkcja syropu glukozowo-galaktozowego Produkcja bezlaktozowej serwatki Synteza galaktooligosacharydów

Pyrococcus woesei izolowany z morskiej solfatary (Porto di Levante, wyspa Volcano, Włochy) Domena: Archaea Grupa: Euryarchaeota Klasa: Thermococci Rząd: Thermococcales Rodzina: Thermococcaceae Rodzaj: Pyrococcus Gatunek: Pyrococcus woesei Ziarniak 0,8 - 2,0 μm Urzęsienie lofotrichalne Beztlenowiec Optimum temperatury - 97 - 100°C Optimum pH - 6,0 Optimum NaCl - 30% Produkty metabolizmu - H2, H2S (w obecności S0)

Konstrukcja systemu ekspresyjnego Pichia pastoris Kex2 pre-pro sekwencja α-faktora S. cerevisiae Lys-Arg β-D-galaktozydaza P. woesei

Produkcja β-D-galaktozydazy P. woesei w systemie ekspresji P Produkcja β-D-galaktozydazy P. woesei w systemie ekspresji P. pastoris (AOX1) Krzywa wzrostu P. pastoris GS115 + pPICZαβ-gal Indukcja ekspresji genu 24 – 47 h – 25% (m/v) glicerol + 5*10-4% biotyna + 0,05% histydyna (0,24 ml/min) 48 – 72 h – 25% (v/v) MeOH + 5*10-4% biotyna + 0,05% histydyna (0,24 ml/min) 72 – 144 h – 30% (v/v) MeOH + 5*10-4% biotyna + 0,05% histydyna (0,24 ml/min) Pożywka BMGY (2% pepton K, 1% ekstrakt drożdżowy, 0,1 M K2HPO4/KH2PO4 pH 6,0, 1,34% YNB, 4*10-5% biotyna, 2% glicerol), 30 °C, napowietrzanie 3,0 vvm, mieszanie 1200 obr./min, Biostat R, 5l (B. Braun Biotech International, Niemcy), 2,5 l objętości roboczej

Uzyskano 300 mg białka z litra pożywki pohodowlanej Produkcja β-D-galaktozydazy P. woesei w systemie ekspresji P. pastoris (AOX1) P. pastoris GS115 + pPICZαβ-gal M – Marker wielkości białek: 97, 66, 45, 30, 20,1 i 14,4 kDa 1 – pożywka hodowlana po 48 h hodowli 2 – pożywka hodowlana po 72 h hodowli 3 – pożywka hodowlana po 96 h hodowli 4 – pożywka hodowlana po 120 h hodowli 5 – pożywka hodowlana po 144 h hodowli Uzyskano 300 mg białka z litra pożywki pohodowlanej

Produkcja proteinazy K Tritirachium album w systemie ekspresji Pichia pastoris

Konstrukcja systemu ekspresyjnego Pichia pastoris Zastosowanie proteinazy K Tritirachium album izolacja genomowego DNA z komórek bakterii, drożdży itp. Konstrukcja systemu ekspresyjnego Pichia pastoris Kex2 pre-pro sekwencja proteinazy K T. album Lys-Arg proteinaza K T. album

z litra pożywki pohodowlanej Produkcja proteinazy K T. album w systemie ekspresji P. pastoris (AOX1) 1 – Marker wielkości białek: 66, 45, 35, 25, 18,4 i 14,4 kDa 2 – pożywka hodowlana po 24 h indukcji (72 h hodowli) 3 – pożywka hodowlana po 48 h indukcji (96 h hodowli) 4 – pożywka hodowlana po 72 h indukcji (120 h hodowli) Uzyskano 700 mg białka z litra pożywki pohodowlanej P. pastoris GS115 + pPICZProtK

Porównanie wydajności produkcji białek w różnych drożdżowych systemach ekspresji

Produkcja interleukiny 6 (IL-6) Szczepy gospodarzy ekspresyjnych Arxula adeninivorans Hansenula polymorpha Saccharomyces cerevisiae Rekombinantowy plazmid ekspresyjny

Produkcja interleukiny 6 (IL-6) A. adeninivorans pojedyncze komórki A. Adeninivorans strzępki H. polymorpha S. cerevisiae

Produkcja interleukiny 6 (IL-6) A. adeninivorans; pojedyncze komórki – IL-6 stanowi 10% wydzielanych białek A. adeninivorans; strzępki – IL-6 stanowi 30% wydzielanych białek H. polymorpha -IL-6 stanowi 50% wydzielanych białek S. cerevisiae - IL-6 stanowi 50% wydzielanych białek

Produkcja interleukiny 6 (IL-6) A. adeninivorans; pojedyncze komórki A. adeninivorans; strzępki H. polymorpha S. cerevisiae

Konstrukcja rekombinantowego szczepu Saccharomyces cerevisiae zdolnego do produkcji etanolu z laktozy zawartej w serwatce

Serwatka surowiec do produkcji etanolu Serwatka - prawie klarowna ciecz powstała po ścięciu zawartej w mleku kazeiny laktoza 4,5 - 5,0% m/v białka 0,6 - 0,8% m/v lipidy 0,4 - 0,5% m/v sole mineralne, kwas mlekowy, kwas cytrynowy, mocznik, kwas moczowy Światowa produkcja serwatki – ponad 145 mln ton/rok

Zastosowanie serwatki 50% wytwarzanej na świecie serwatki jest przetwarzane

Serwatka surowiec do produkcji etanolu Najwięksi światowi producenci etanolu z serwatki Anchor Ethanol Company, Nowa Zelandia (17-21 mln l/rok) Golden Cheese Company of California, USA Cerbery Ballineen Company, Irlandia Wykorzystywane szczepy – Kluyveromyces fragilis bezpośrednia fermentacja laktozy z wytworzeniem etanolu wrażliwość na wysokie stężenie etanolu w płynie hodowlanym wrażliwość na wysokie stężenie sacharydów w płynie hodowlanym Wydajność produkcji – 4% etanolu w płynie pohodowlanym

Etanol jako składnik biopaliw Biopaliwo – paliwo zawierające powyżej 5% biokomponentu bioetanolu eteru etylo-tert-butylowego Wykorzystanie biopaliw w Polsce w 2005 r. biokomponenty – 0,48% wartości enetgetycznej paliw transportowych Wykorzystanie biopaliw w Polsce w 2010 r. biokomponenty – 5,75% wartości energetycznej paliw transportowych

Klasyczna fermentacja alkoholowa Wykorzystywane szczepy – Saccharomyces cerevisiae brak zdolności do bezpośredniej fermentacji laktozy z wytworzeniem etanolu odporność na wysokie stężenie etanolu w płynie hodowlanym odporność na wysokie stężenie sacharydów w płynie hodowlanym Produkcja etanolu z serwatki z wykorzystaniem szczepów S. cerevisiae konieczność wstępnej hydrolizy laktozy

Rekombinantowy szczep S Rekombinantowy szczep S. cerevisiae zdolny do produkcji etanolu z serwatki Charakterystyka szczepu zawiera gen kodujący β-D-galaktozydazę K. lactis zawiera gen kodujący permeazę laktozy K. lactis geny pod kontrolą promotora CYC-GAL indukowanego galaktozą zmutowany gen leu2d (marker selekcyjny) i sekwencja rDNA umożliwiły uzyskanie stabilnych genetycznie rekombinantów Wyniki badań rekombinantowy szczep zdolny do utylizacji laktozy przesunięcie metabolizmu w kierunku tlenowej produkcji biomasy kosztem fermentacji alkoholowej

Rekombinantowy szczep S Rekombinantowy szczep S. cerevisiae zdolny do produkcji etanolu z serwatki Charakterystyka szczepu zawiera gen kodujący β-D-galaktozydazę Aspergillus niger gen klonowany z własną sekwencją sygnalną umożliwiającą zewnątrzkomórkową produkcję białka autonomiczna replikacja plazmidu ekspresyjnego Wyniki badań rekombinantowy szczep w niewielkim stopniu zdolny do utylizacji laktozy (optymalne warunki działania enzymu pH = 3,5, temp. 65 °C) dwufazowość wzrostu niestabilność genetyczna

Rekombinantowy szczep S Rekombinantowy szczep S. cerevisiae zdolny do produkcji etanolu z serwatki zdolność do zewnątrzkomórkowej produkcji β-D-galaktozydazy enzym wykazujący wysoką aktywność w warunkach prowadzenia fermentacji alkoholowej brak inhibicji enzymu produktami hydrolizy laktozy brak inhibicji enzymu w obecności jonów wapnia jednoczesna asymilacja glukozy i galaktozy stabilność genetyczna brak elementów genetycznych pochodzenia bakteryjnego

Oczekiwane efekty wdrożenia wyników projektu do praktyki gospodarczej tania, wydajna technologia produkcji etanolu pełniejsze wykorzystanie serwatki zmniejszenie zużycia paliw klasycznych poprzez szersze wykorzystanie biopaliw zmniejszenie zanieczyszczenia środowiska naturalnego Potencjalni odbiorcy wyników projektu zakłady przemysłu gorzelniczego zakłady przemysłu mleczarskiego zakłady petrochemiczne

Cykl pentozofosforanowy Konstrukcja rekombinantowego szczepu H. polymorpha zdolnego do wydajnej produkcji etanolu z ksylozy Surowiec – hydrolizat biomasy roślinnej (słoma, drewno) celuloza → glukoza hemiceluloza → głównie ksyloza lignina ksyloza reduktaza ksylozowa ksyloza ksylitol izomeraza ksylozowa Bakterie Drożdże dehydrogenaza ksylitolu ksyluloza ksyluloza ksylulokinaza ksylulokinaza ksylulozo-5-fosforan ksylulozo-5-fosforan Cykl pentozofosforanowy

Rekombinantowy szczep H Rekombinantowy szczep H. polymorpha zdolny do wydajnej produkcji etanolu z serwatki Charakterystyka szczepu zawiera mutacje w genie kodującym NAD(P)H-zależną reduktazę ksylozową zawiera mutacje w genach kodujących dwie NAD-zależne dehydrogenazy ksylitolu zawiera gen kodujący izomerazę ksylozową E. coli zawiera dodatkowe geny kodujące ksylulokinazę H. polymorpha Wyniki badań czterokrotne zwiększenie wydajności produkcji etanolu z ksylozy

Podsumowanie Drożdżowe systemy ekspresyjne to doskonałe narzędzie do produkcji heterologicznych białek Nie ma jednego optymalnego systemu do produkcji wszystkich polipeptydów – wydajność produkcji zależy od stosowanego systemu i produkowanego białka Możliwe jest skonstruowanie rekombinantowych szczepów drożdży zdolnych do produkcji metabolitów niebiałkowych z niekonwencjonalnych źródeł węgla