Ewolucja Wszechświata

Slides:



Advertisements
Podobne prezentacje
Pomiary polaryzacji gluonów w eksperymencie
Advertisements

Anihilacja i kreacja materii
Ewolucja Wszechświata
Ewolucja Wszechświata
Festiwal Nauki Politechnika Warszawska Wydział Fizyki.
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych
Elementarne składniki materii
Ewolucja Wszechświata
Podstawowy postulat szczególnej teorii względności Einsteina to:
Strzałka czasu w rozpadach kwarków i antykwarków
Festiwal Nauki Politechnika Warszawska Wydział Fizyki.
Politechnika Warszawska Wydział Fizyki Festiwal Nauki
Zawsze zdumiewa mnie, że co tylko ludzie wymyślą, to rzeczywiście się zdarzy. Abdus Salam Abdus Salam – pakistański fizyk, współlaureat Nagrody Nobla w.
Rodzaje cząstek elementarnych i promieniowania
Raymond Davis Jr. jako pracownik Brookhaven National Laboratory wymyślił pionierską metodę chwytania neutrin słonecznych za pomocą tetrachloroetylenu.
Dlaczego badamy mezony η i η? Joanna Stepaniak Warszawa,
1 Charakterystyki poprzeczne hadronów w oddziaływaniach elementarnych i jądrowych wysokiej energii Charakterystyki poprzeczne hadronów w oddziaływaniach.
Silnie oddziałujące układy nukleonów
Big Bang teraz.
Ewolucja Wszechświata
FIZYKA dla studentów POLIGRAFII Jądro atomowe
Początki Wszechświata
Początki Wszechświata
Ewolucja Wszechświata
Detekcja cząstek rejestracja identyfikacja kinematyka.
Ewolucja Wszechświata
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych
Wydział Fizyki Politechnika Warszawska Festiwal Nauki
Oddziaływania Elementy kwantowej elektrodynamiki (QED) Teoria Yukawy
Symetria CP Symetria CP – przypomnienie z wykładu 5
WIELKI WYBUCH Standardowy Model Kosmologiczny Big Bang
Badanie rozpadów mezonu  w eksperymencie WASA
Marcin Berłowski, Zakład Fizyki Wielkich Energii IPJ
Co odkryje akcelerator LHC ?
Fizyka neutrin – wykład 3
FIZYKA CZĄSTEK od starożytnych do modelu standardowego i dalej
Podział akceleratorów Główny podział akceleratorów uwzględnia kształt toru i metodę przyspieszania: Liniowe - cząstki przyspieszane są na odcinku prostym:
Dlaczego we Wszechświecie
Ewa Rondio Narodowe Centrum Badań Jądrowych Warszawa, RADA DO SPRAW ATOMISTYKI.
Fizyka cząstek elementarnych
Reakcje jądrowe Reakcja jądrowa – oddziaływania dwóch obiektów, z których przynajmniej jeden jest jądrem. W wyniku reakcji jądrowych powstają: Nowe jądra.
AKADEMIA PODLASKA W SIEDLCACH
Wstęp do fizyki cząstek elementarnych
Wstęp do fizyki cząstek elementarnych
Czego oczekujemy od LHC?
Historia Wczesnego Wszechświata
Ewolucja Wszechświata
Wczesny Wszechświat Krzysztof A. Meissner CERN
Cząstki i siły tworzące nasz wszechświat Piotr Traczyk IPJ Warszawa.
Jan Kalinowski Uniwersytet Warszawski
FIZYKA CZĄSTEK od starożytnych do modelu standardowego i dalej
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Astronomia gwiazdowa i pozagalaktyczna II Wczesny Wszechświat:  pochodzenie barionów  kosmiczna nukleosynteza.
Jądro atomowe - główny przedmiot zainteresowania fizyki jądrowej
Cząstki elementarne..
Cząstki elementarne i ich oddziaływania
Budowa atomu Poglądy na budowę atomu. Model Bohra. Postulaty Bohra
Cząstki elementarne. Model standardowy Martyna Bienia r.
Ewolucja i budowa Wszechświata Data Wykonał: Mateusz Wujciuk Zarządzanie i Inżynieria Produkcji Wydział Górnictwa i Geoinżynierii Akademia Górniczo-Hutnicza.
Wydział Fizyki Politechniki Warszawskiej
Co i gdzie się mierzy Najważniejsze ośrodki fizyki cząstek na świecie z podaniem ich najciekawszych wyników i kierunków przyszłych badań Charakterystyka.
Wstęp do fizyki cząstek
Oddziaływania relatywistycznych jąder atomowych
Fizyka jądrowa. IZOTOPY: atomy tego samego pierwiastka różniące się liczbą neutronów w jądrze. A – liczba masowa izotopu Z – liczba atomowa pierwiastka.
Cząstki fundamentalne
Zapis prezentacji:

Ewolucja Wszechświata Wykład 4

cząstki elementarne i oddziaływania

co jest elementarne? brak struktury! 10-10 m atom 10-14 m jądro nukleon kwark elektron brak struktury!

elementarność... 1897 – elektron (J.J.Thomson) 1905 – foton (A.Einstein) 1911 – jądro (E.Rutherford) 1919 – proton (E.Rutherford) 1928 – pozyton (P.A.M.Dirac) 1931 – neutrino (W.Pauli) 1932 – neutron (J.Chadwick)

elektron Thomson (1895) – promienie katodowe elektroliza emisja elektronów czas życia: stabilny masa: m = 0.511 MeV ładunek: z = -1 barionowy: B = 0 leptonowy: L = 1 spin: J = ½ moment magnetyczny: P.A.M.Dirac

proton Rutherford (1919) – emisja po reakcji  + N czas życia: stabilny masa: m = 938.27 MeV ładunek: z = 1 barionowy: B = 1 leptonowy: L = 0 spin: J = ½ moment magnetyczny: struktura?

foton A.Einstein (1905) – efekt fotoelektryczny czas życia: stabilny masa: m = 0 ładunek: z = 0 barionowy: B = 0 leptonowy: L = 0 spin: J = 1 energia, pęd:

neutron Chadwick (1930) czas życia:  = 14.8 min, n  p + e + e masa: m = 939.57 MeV ładunek: z = 0 barionowy: B = 1 leptonowy: L = 0 spin: J = ½ moment magnetyczny:

pozyton P.A.M.Dirac (1928) – relatywistyczne równanie falowe spin moment magnetyczny oraz energia: mc2 -mc2 cząstka (elektron) dziura (pozyton) Carl Anderson (1932) – odkrycie w komorze mgłowej z polem B

kreacja pary foton pozyton elektron hmin = 2mec2  1.02 MeV

lawiny fotonowo-elektronowe Zdjęcie z komory pęcherzykowej dwóch kwantów gamma powstałych w wyniku rozpadu neutralnego mezonu pi wyprodukowanego w zderzeniu jądrowym.

anihilacja pozyton elektron foton  hamowanie pozytonium anihilacja 2 fotony E  0.5 MeV

Pauli (1931) – przewidział istnienie na podstawie analizy rozpadu  neutrino Pauli (1931) – przewidział istnienie na podstawie analizy rozpadu  czas życia: stabilny masa: m = 0 ? (< 3·10 –6 MeV) ładunek: z = 0 barionowy: B = 0 leptonowy: L = 1 spin: J = ½ moment magnetyczny:  = 0 Reines, Cowan (1957) – odkryli neutrino

więcej cząstek... 1938 – miony (C.Anderson i S.Neddermeyer – promieniowanie kosmiczne) m  200 me = (105 MeV)  oraz + (antycząstka) są nietrwałe – czas życia:   2.5 10-6 s rozpady mionów: 1947, fotoemulsja:   e +  +e +  e+ +  e + 1962 – dwa rodzaje neutrin: elektronowe i mionowe: (e, e), (,  )... a potem jeszcze taonowe (,  )

odkrycie taonu SPEAR (energia zderzenia w środku masy = 4 GeV) e+ + e  + +     +  + +  e+ + e +

więcej cząstek... Mezony  (piony) m  150 MeV Powell (1947) – promienie kosmiczne + emulsja jądrowa Mezony  (piony) m  150 MeV + + e+  e  +  + +  +  e+ + e + (e+ + e   + ) Istnieje  oraz + (antycząstka)

0 w komorze pęcherzykowej  + Xe  0 + ... 0   +  T = 3.5 GeV

pierwsza fotografia cząstki Vo wtórne kosmiczne, h = 0 komora mgłowa B = 0.35 T, (Manchester Univ.) π+ π- Ko G.D.Rochester i C.C.Butler; Nature, 160, 855, (1947) Mezon K0 – cząstka dziwna mV = 500  600 MeV  = 10-11  10-9 s

wśród produktów rozpadu też: protony π- p o p+  180 MeV – proton p-  190 MeV – pion mV  1130 MeV Hiperon 0 – cząstka dziwna

K + p   + K+ + Ko p0 = 5 GeV/c  p hiperon omega K+ Ko  e e+  o o K + p   + K+ + Ko p0 = 5 GeV/c   o +  o  o + o o  p +   o K p o  2  2 ( e + e+ ) N.Samios, BNL (1964) komora Glasera H2, 80’ Dziwność  = -3

Każdej cząstce odpowiada antycząstka Model Standardowy Do chwili obecnej odkryto około dwieście cząstek (z których większość nie jest cząstkami elementarnymi). Model Standardowy – teoria opisująca wszystkie cząstki i oddziaływania między nimi za pomocą: 6 kwarków 6 leptonów cząstek przenoszących oddziaływania Każdej cząstce odpowiada antycząstka

kwarki (spin = ½) i leptony (spin = ½) aromat (flavour) masa [MeV] ładunek lepton u – up górny 1.5  4.5 +2/3 e - elektron  =  0.511 -1 d – down dolny 5.0  8.5 -1/3 ν - neutrino elektronowe 0 < 3.010-6 c – charm powabny 1.0  1.4 103 μ -mion  = 2.20·10-6 s 105.7 s – strange dziwny 80  155 νμ – neutrino mionowe 0 < 0.19 t – top wierzchni 174. 103 τ - taon  = 2.91·10-13 s 1777.0 b – bottom spodni 4.0  4.5 103 ντ – neutrino taonowe 0 < 18.2 PPb 2002 Cząstki z różnych rodzin różnią się zapachem.

Hadrony Z kwarków zbudowane są hadrony: z trzech kwarków – bariony z kwarku i antykwarku - mezony

Bariony Większość masy hadronu to energia wiązania kwarków.

Masa hadronu Kupujemy 1 kg jabłek... (masa protonu  1 GeV) ... a w domu z torby wysypujemy 3 maleńkie jabłuszka – tylko 12 g! (masa kwarków  0,012 GeV)

Mezony

Cząstki należące do różnych rodzin różnią się zapachem. Leptony Leptony = (e, e), (,  ), (,  ) + antycząstki są fermionami oddziałujacymi słabo, Liczba leptonowa: Le L L e, e +1 ,  ,  e+,e 1 +, +, inne Cząstki należące do różnych rodzin różnią się zapachem.

Rozpady leptonów Elektron i 3 rodzaje neutrin – trwałe Mion i taon - nietrwałe Liczby elektronowe, mionowe i taonowe są zawsze zachowane, gdy ciężki lepton rozpada się na mniejsze leptony. Czy te rozpady są możliwe? Liczba mionowa niezachowana Energia niezachowana

Oddziaływania Wirtualne cząstki przenoszące oddziaływanie Zasada nieoznaczoności: czas 1 cząstka wysyła i pochłania cząstki wirtualne 1 cząstka wysyła, a 2 cząstka pochłania cząstki wirtualne

Odziaływanie elektromagnetyczne Działa na ładunki elektryczne Odpowiedzialne za wiązania chemiczne Nośnik – foton () Zasięg – nieskończony

Odziaływanie silne Działa na ładunki kolorowe Odpowiedzialne za wiązanie kwarków w barionach Nośniki – gluony Zasięg – 10-15 m (odległość typowa dla kwarków w nukleonie)

Odziaływanie silne B G R G R B Kwarki mają ładunek kolorowy Istnieją tylko cząstki o całkowitym ładunku kolorowym równym zeru. Uwięzienie kwarków (kolorów)

Oddziaływanie między elektronami maleje wraz z odległością Oddziaływanie między kwarkami rośnie wraz z odległością

Uwięzienie kwarków mezon D- mezon D+ mezon c Zamiana energii na masę Oddziaływanie między kwarkami rośnie wraz z odległością. Próba rozdzielenia kwarków prowadzi do wytworzenia nowej pary kwark-antykwark (jest to proces korzystniejszy energetycznie). mezon D- mezon D+ mezon c Zamiana energii na masę

Oddziaływanie kolorowe Gluony muszą mieć ładunek kolorowy oraz ładunek antykolorowy, gdyż zmieniają one zawsze dany kolor w antykolor. q g Ładunek kolorowy jest zawsze zachowany. 8 gluonów - 8 stanów kolorów – superoktet (SU3)

Oddziaływanie słabe Odpowiedzialne za rozpad ciężkich kwarków i leptonów na lżejsze kwarki i leptony (zmiana zapachu). Cząstki przenoszące oddziaływanie słabe to bozony: W+, W- i Z0. Masy W+, W- i Z0 duże (~80 GeV)  Zasięg mały Oddziaływanie słabe i elektromagnetyczne opisuje jednolita teoria oddziaływań elektrosłabych.

Oddziaływania elektrosłabe Małe odległości (10-18 m)  wielkie energie  Oddziaływania słabe i elektromagnetyczne porównywalne. Większe odległości (3•10-17 m)  Oddziaływanie słabe jest 10-4 razy mniejsze niż elektromagnetyczne

Słaby rozpad   e e W   e e W rozpadzie pośredniczy bozon W-

Oddziaływanie grawitacyjne Działa na każde ciało Odpowiedzialne za istnienie planet, gwiazd, galaktyk... Nośnik (hipotetyczny) – grawiton? Zasięg – nieskończony Brak teorii, która wiąże oddziaływanie grawitacyjne z innymi rodzajami oddziaływań – jeden z głównych nierozwiązanych problemów kosmologii.

Oddziaływania Literatura: grawit. elektrosłabe silne (kolorowe) grawiton (?) masa [GeV] ładunek γ W+ W- Zo 80.4 80.4 91.2 +1 -1 0 g - gluon superoktet SU(3) 8 stanów koloru Literatura: http://chall.ifj.edu.pl/przygodazczastkami/frameless/index.html http://www.wiw.pl/fizyka/boskaczastka/ L. Lederman „Boska cząstka”

Jak wytworzyć plazmę kwarkowo-gluonową? Zwiększyć: ciśnienie temperaturę Takie warunki panowały we Wszechświecie tuż po Wielkim Wybuchu

Plazma kwarkowo-gluonowa Wczesny Wszechświat Temperatura, K Tc=31012 K Gwiazdy neutronowe 1 10 Względna gęstość materii jądrowej

Zderzenia jąder o wielkich energiach – wytwarza się stan materii o wysokiej temperaturze i ciśnieniu. czas Emisja cząstek Gaz hadronowy Faza mieszana Plazma kwarkowo-gluonowa Stan przedrównowagowy przestrzeń

RHIC - Relativistic Heavy IonCollider Brookhaven National Laboratory, Long Island (USA) Eksperyment rozpoczęty w 2000 roku RHIC - Relativistic Heavy IonCollider (Relatywistyczny Zderzacz Ciężkich Jonów)

Akcelerator w tunelu 4 m pod ziemią przyspiesza przeciwbieżne wiązki jąder atomowych do prędkości 99,95 prędkości światła. Wiązka odchylana jest w polu magnetycznym wytwarzanym przez nadprzewodzące magnesy umieszczone w ciekłym helu o temperaturze 4,5 K.

RHIC Energia zderzenia Ecms = 200 GeV Tysiące zderzeń na sekundę Podczas zderzenia wytwarza się temperatura 10 000 razy wyższa niż na Słońcu W eksperymentach bierze udział ponad 1000 fizyków z całego świata Grupa naukowców i studentów z Wydziału Fizyki P.W. uczestniczy w eksperymencie STAR

Cztery eksperymenty na zderzaczu RHIC Rejestracja cząstek Cztery eksperymenty na zderzaczu RHIC

Rejestracja cząstek

Ekperyment STAR E = mc2 Zamiana energii w masę

W poszukiwaniu plazmy kwarkowo-gluonowej... W zderzeniu dwóch jąder ołowiu... ...mogą powstać nowe cząstki zwane J/PSI http://info.fuw.edu.pl/~ajduk/Public/SCIENCE/qgp.html

W poszukiwaniu plazmy kwarkowo-gluonowej... Jeśli w zderzeniu powstanie plazma kwarkowo-gluonowa, to niektóre cząstki J/PSI ulegną zniszczeniu, za to powstaną inne cząstki – kwarki dziwne. Pojawi się też więcej cząstek rozpadających się na pary elektronowe. Badając, ile i jakich cząstek powstało w zderzeniu, możemy stwierdzić, czy uformowała się plazma kwarkowo-gluonowa i jak ewoluowała. Niestety, wyniki nie są jednoznaczne... http://info.fuw.edu.pl/~ajduk/Public/SCIENCE/qgp.html

Thomas K Hemmick, Stony Brook University Quark Matter 2004, Oakland CA ośrodek? brak ośrodka Medium? No Medium! Nucleus- nucleus collision Proton/deuteron Zderzenie jądro-jądro Zderzenie protonu lub deuteronu z jądrem Thomas K Hemmick, Stony Brook University Quark Matter 2004, Oakland CA

KONIEC poszukiwań plazmy kwarkowo-gluonowej The END of searching for the QGP POCZĄTEK badania jej własności The BEGINNING of measuring its properties 12D Correlations Heavy Quarks Direct Photons Leptons and its relation to CGC Miklos Gyulassy, Columbia University Quark Matter 2004, Oakland CA

Sonic boom from quenched jets Casalderrey,ES,Teaney, hep-ph/0410067; H Sonic boom from quenched jets Casalderrey,ES,Teaney, hep-ph/0410067; H.Stocker… Wake effect or “sonic boom” the energy deposited by jets into liquid-like strongly coupled QGP must go into conical shock waves Plazma kwarkowo-gluonowa ma własności podobne do cieczy. Edward Shuryak State University of New York Quark Matter 2005, Budapeszt

Następne przygotowywane eksperymenty: LHC (Large Hadron Colider) – 2007r. Wielki Zderzacz Jonów CERN Genewa (Szwajcaria/ Francja)

Eksperyment ALICE

Nowe możliwości badania materii RHIC LHC Energia (GeV) 200 Liczba rejestrowanych cząstek 850 Temperatura (T/Tc) 1,9 Gęstość energii (GeV/fm3) 5 Czas „życia” plazmy 2 - 4 kwarkowo-gluonowej (fm/c) 5500 28 razy 1500-8000 ? 3,0-4,2 goręcej 15-60 gęściej  10 dłużej Quark Matter 2004, Oakland CA Yves Schutz

Eksperyment ALICE 937 naukowców 77 instytutów 28 krajów Grupa naukowców i studentów z Wydziału Fizyki P.W.