Wykład 8 Zrandomizowany plan blokowy

Slides:



Advertisements
Podobne prezentacje
Przykład liczbowy Rozpatrzmy dwuwymiarową zmienną losową (X,Y), gdzie X jest liczbą osób w rodzinie, a Y liczbą izb w mieszkaniu. Niech f.r.p. tej zmiennej.
Advertisements

Rangowy test zgodności rozkładów
Joanna Sawicka Wydział Nauk Ekonomicznych, Uniwersytet Warszawski
Układy eksperymentalne analizy wariancji. Analiza wariancji Planowanie eksperymentu Analiza jednoczynnikowa, p poziomów czynnika, dla każdego obiektu.
hasło: student Szymon Drobniak pokój konsultacje: wtorek 13-14
Układy eksperymentalne analizy wariancji. Analiza wariancji Planowanie eksperymentu Analiza jednoczynnikowa, p poziomów czynnika, dla każdego obiektu.
Wykład 9 Analiza wariancji (ANOVA)
Wykład 5 Standardowy błąd a odchylenie standardowe
Wykład 11 Przykład z muszkami (krzyżówka wsteczna CcNn z ccnn)
Wykład 7: Moc Moc testu to prawdopodobieństwo odrzucenia H0, gdy prawdziwa jest HA Moc=czułość testu Moc = 1 – Pr (nie odrzucamy H0, gdy prawdziwa jest.
Obserwowalność System ciągły System dyskretny
Porównywanie średnich dwóch prób niezależnych o rozkładach normalnych (test t-studenta)
Analiza wariancji jednoczynnikowa
Liczby pierwsze.
Analiza wariancji Marcin Zajenkowski. Badania eksperymentalne ANOVA najczęściej do eksperymentów Porównanie wyników z 2 grup lub więcej Zmienna niezależna.
Statystyka w doświadczalnictwie
hasło: student Joanna Rutkowska Aneta Arct
BIOSTATYSTYKA I METODY DOKUMENTACJI
Wykład 6 Standardowy błąd średniej a odchylenie standardowe z próby
Wyklad 9 Moc Moc testu to p-stwo odrzucenia H0 gdy prawdziwa jest HA
Wykład 4 Rozkład próbkowy dla średniej z rozkładu normalnego
Wykład 8 Testy Studenta Jest kilka różnych testów Studenta. Mają one podobną strukturę ale służą do testowania różnych hipotez i różnią się nieco postacią.
Wykład 10 Układ zrandomizowany blokowy
Wykład 3 Rozkład próbkowy dla średniej z rozkładu normalnego
Wykład 11 Analiza wariancji (ANOVA)
Wykład 3 Wzór Bayesa, cd.: Wpływ rozkładu a priori.
Wykład 4 Przedziały ufności
Próby niezależne versus próby zależne
Próby niezależne versus próby zależne
Porównywanie średnich dwóch prób zależnych
Rozkład normalny Cecha posiada rozkład normalny jeśli na jej wielkość ma wpływ wiele niezależnych czynników, a wpływ każdego z nich nie jest zbyt duży.
UKŁADY SZEREGOWO-RÓWNOLEGŁE
Klasyfikacja systemów
Transformacja Z (13.6).
Równania i Nierówności czyli:
Jednoczynnikowa analiza wariancji (ANOVA)
Rozkład t.
Hipotezy statystyczne
Analiza wariancji jednoczynnikowa
Testy nieparametryczne
Agnieszka Jankowicz-Szymańska1, Wiesław Wojtanowski1,2
Analiza współzależności cech statystycznych
Wyrażenia algebraiczne
Rozkłady wywodzące się z rozkładu normalnego standardowego
Testy nieparametryczne
Testy nieparametryczne
Analiza wpływu regulatora na jakość regulacji (1)
Hipotezy statystyczne
Dekompozycja Kalmana systemów niesterowalnych i nieobserwowalnych
Podstawy analizy matematycznej I
1. ŁATWOŚĆ ZADANIA (umiejętności) 2. ŁATWOŚĆ ZESTAWU ZADAŃ (ARKUSZA)
Obserwowalność i odtwarzalność
Podstawy statystyki, cz. II
-17 Oczekiwania gospodarcze – Europa Wrzesień 2013 Wskaźnik > +20 Wskaźnik 0 a +20 Wskaźnik 0 a -20 Wskaźnik < -20 Unia Europejska ogółem: +6 Wskaźnik.
W2 Modelowanie fenomenologiczne I
Porównywanie średnich 2 i więcej prób o rozkładach innych niż normalny
Ekonometryczne modele nieliniowe
Seminarium licencjackie Beata Kapuścińska
Jak Jaś parował skarpetki Andrzej Majkowski 1 informatyka +
ANALIZA ANOVA - KIEDY? Wiele przedsięwzięć badawczych zakłada porównanie pomiędzy średnimi z więcej niż dwóch populacji lub dwóch warunków eksperymentalnych.
Systemy dynamiczne 2014/2015Obserwowalno ść i odtwarzalno ść  Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Obserwowalność.
STATYSTYKA Pochodzenie nazwy:
Wykład 5 Przedziały ufności
Przeprowadzenie badań niewyczerpujących, (częściowych – prowadzonych na podstawie próby losowej), nie daje podstaw do formułowania stanowczych stwierdzeń.
STATYSTYKA – kurs podstawowy wykład 7 dr Dorota Węziak-Białowolska Instytut Statystyki i Demografii.
Rozkłady statystyk z próby dr Marta Marszałek Zakład Statystyki Stosowanej Instytut Statystyki i Demografii Kolegium.
Wnioskowanie statystyczne. Próbkowanie (sampling)
Liczbami naturalnymi nazywamy liczby 0,1,2,3,..., 127,... Liczby naturalne poznaliśmy już wcześniej; służą one do liczenia przedmiotów. Zbiór liczb.
Testy nieparametryczne
Zapis prezentacji:

Wykład 8 Zrandomizowany plan blokowy Staramy się kontrolować efekty zróżnicowania badanych jednostek eksperymentalnych poprzez zapewnienie ich ``jednorodności’’ wewnątrz każdej grupy zabiegowej. Dzielimy obiekty na bloki: Blok to grupa podobnych obiektów Podobieństwo dotyczy wartości zmiennych ubocznych (``zakłócających’’). Powinniśmy uwzględniać jedynie zmienne mogące mieć wpływ na wynik eksperymentu.

Przykłady bloków: Owocówki z jednej linii wsobnej Pacjenci podobni pod względem wieku (płci, diagnozy i/lub historii choroby, itp.) Rośliny kukurydzy rosnące na tym samym stanowisku

Przyporządkowanie Obiekty dzielimy na jednorodne bloki, biorąc pod uwagę zmienne uboczne mogące mieć wpływ na wynik eksperymentu. Dokonujemy randomizacji w obrębie każdego z bloków (losowo przyporządkowujemy obiekty z bloku do poszczególnych zabiegów). W każdej grupie zabiegowej otrzymujemy tę samą liczbę obiektów z każdego bloku Tak więc rozkłady zmiennych ubocznych w grupach zabiegowych są podobne.

Przykład Porównujemy efekt działania nowego lekarstwa z placebo: Obiekty – ochotniczki, u których w ciągu ostatniego roku stwierdzono raka piersi Niektóre miały lumpektomię, inne radykalną mastektomię (2) Niektóre były po naświetlaniach, inne nie (2) U niektórych zidentyfikowano ryzyko genetyczne BRCA1, BRCA2, u innych nie (3)

Dzielimy pacjentki na 223=12 bloków, tzn.: lumpektomia, naświetlania, BRCA1 lumpektomia, naświetlania, BRCA2, …. mastektomia, brak naświetlań, bez ryz. gen. W każdym bloku losowo wybrana połowa kobiet otrzymuje lekarstwo, a druga--placebo Dlatego grupy kobiet biorących lekarstwo i placebo mają podobną strukturę

Inne czynniki używane do blokowania: Laboratorium lub osoba dokonująca pomiarów Laboratorium lub osoba wykonująca zabieg Geografia Genetyka Czynniki socjo-ekonomiczne Blokujemy tylko względem tych czynników, które mogą mieć wpływ na odpowiedź.

Stratyfikacja Jest to „blokowanie” względem zmiennej ubocznej, której wartości można uporządkować (np. ilościowej). Dzielimy na tzw. warstwy (zamiast na bloki). Przykłady: Niskie, średnie, wysokie dochody Grupy wiekowe Stopień rozwoju choroby Randomizujemy w obrębie każdej warstwy. Czasami definiujemy warstwy przed próbkowaniem, aby pobrać podobną liczbę obserwacji z każdej; próbkowanie warstwowe.

Powiązane pary Obserwacje występują w parach Przykłady: Układ blokowy dla dwu zabiegów, gdzie każdy blok składa się z dwu obiektów Dwa pomiary na tym samym obiekcie (dwa kolejne dni, dwie strony, przed/po…) Obserwujemy dwie grupy w czasie

Przykłady cd.: Obiekty naturalnie występują w parach, takich jak pary identycznych blizniaków Obiekty łaczymy w pary o podobnym wieku, płci, zawodzie, stanie rozwoju choroby itd. Ten sam obiekt mierzony przy dwu okazjach

Test Studenta dla powiązanych par Do produkcji butów używamy dwóch różnych materiałów: A i B. Obserwacje: zużycie podeszew w butach noszonych przez 10 chłopców. Każdy chłopiec ma podeszwę w jednym bucie zrobioną z materiału A, a w drugim z materiału B Randomizujemy (A na lewy albo na prawy)

Zużycie podeszew Chłopiec A B A-B 1 13.2 14.0 -0.8 2 8.2 8.8 -0.6 … …. 10 13.3 13.6 -0.3 średnia -0.41 s 0.38

Liczymy d= Y1- Y2, średnią(d), SD(d), SE(d) Hipoteza H0 : d = A - B=0 Ha : d ≠ 0 Liczymy d= Y1- Y2, średnią(d), SD(d), SE(d) liczymy ts = średnia(d)/SE(d) = df = nd-1= P-wartość= Tablica wartości krytycznych z książki ``Introduction to the Practice of Statistics’’, D.S. Moore, G. P. McCabe

Co się stanie, jeżeli wykonamy test Studenta dla prób niezależnych ? Ta sama hipoteza =10.63, =11.04 =1.11 ts=(10.63-11.04)/1.11=-0.369 P-wartość =

Skąd taka rozbieżność? Bardzo różne SE Test dla par : SE = 0.12 Test dla dwóch niezależnych prób: SE=1.11 Duże zróżnicowanie między obiektami może ukryć wpływ zabiegu! To zróżnicowanie można zneutralizować łącząc obiekty w pary (neutralizujemy wpływ zmiennej ubocznej=ruchliwość dziecka).

Kiedy użyć testu dla par, a kiedy testu dla niezależnych prób ? Na ogół łatwo stwierdzić, czy istnieją naturalne pary obiektów z jednej i drugiej grupy zabiegowej. Kiedy zaplanować eksperyment w oparciu o powiązane pary ? Trudniejsze: oczekujemy, że zmienne zakłócające mogą istotnie zwiększyć rozrzut wyników i staramy się utworzyć dwuelementowe bloki jednorodne ze względu na zmienne zakłócające.

Założenie Test Studenta dla par jest oparty na założeniu, że różnice mają w przybliżeniu rozkład normalny.

Test znaków Co zrobić jeżeli obserwacje nie mają rozkładu normalnego? Dla dwóch niezależnych prób liczyliśmy test Wilcoxona-Manna-Whitneya. Gdy występują sparowane obserwacje możemy zastosować prosty test znaków. Obliczamy znak różnicy między pierwszym i drugim elementem każdej pary obserwacji. Jeżeli zabiegi się nie różnią efektem, to p-stwo, że w dowolnej parze dostaniemy plus powinno być ½. Liczba plusów powinna być w przybliżeniu równa liczba minusów.

 = p-stwo, że w dowolnej ustalonej parze pierwszy zabieg daje lepszy wynik niż drugi. H0:  = ....... HA:  ........ Dla każdej pary obserwacji zapisujemy (+) gdy y1–y2 jest dodatnie lub (–) gdy jest ujemne Zliczamy liczbę + (= N+) i – (= N–) (nie liczymy zer)

Niech n = #par z niezerowymi wynikami. Statystyka testowa Bs = max(N+, N–) dla testu dwustronnego Wartości krytyczne na kolejnym slajdzie. (dla testu jedno i dwustronnego) Odrzucamy H0, gdy Bs  wartości krytycznej Można też obliczyć p-wartości korzystając ze wzoru na rozkład dwumianowy z p=½.

This public domain table was made by CRITICAL VALUES FOR THE SIGN TEST, N = 5..44 | Alpha | 1 Sided 0.05 0.025 0.01 0.005 0.0025 0.001 | 2 Sided (0.10) (0.05) (0.02) (0.01) (0.005) (0.002) | ------+-------------------------------------------------+---- N | ----| 5 | 5 . . . . . 6 | 6 6 . . . . 7 | 7 7 7 . . . 8 | 7 8 8 8 . . 9 | 8 8 9 9 9 . | | 10 | 9 9 10 10 10 10 11 | 9 10 10 11 11 11 12 | 10 10 11 11 12 12 13 | 10 11 12 12 12 13 14 | 11 12 12 13 13 13 15 | 12 12 13 13 14 14 16 | 12 13 14 14 14 15 17 | 13 13 14 15 15 16 18 | 13 14 15 15 16 16 19 | 14 15 15 16 16 17 20 | 15 15 16 17 17 18 21 | 15 16 17 17 18 18 22 | 16 17 17 18 18 19 23 | 16 17 18 19 19 20 24 | 17 18 19 19 20 20 This public domain table was made by William Knight <http://www.math.unb.ca/~knight>

CRITICAL VALUES FOR THE SIGN TEST, N =25..44 | Alpha | 1 Sided 0.05 0.025 0.01 0.005 0.0025 0.001 | 2 Sided (0.10) (0.05) (0.02) (0.01) (0.005) (0.002) | 25 | 18 18 19 20 20 21 26 | 18 19 20 20 21 22 27 | 19 20 20 21 22 22 28 | 19 20 21 22 22 23 29 | 20 21 22 22 23 24 | | 30 | 20 21 22 23 24 24 31 | 21 22 23 24 24 25 32 | 22 23 24 24 25 26 33 | 22 23 24 25 25 26 34 | 23 24 25 25 26 27 35 | 23 24 25 26 27 27 36 | 24 25 26 27 27 28 37 | 24 25 27 27 28 29 38 | 25 26 27 28 29 29 39 | 26 27 28 28 29 30 40 | 26 27 28 29 30 31 41 | 27 28 29 30 30 31 42 | 27 28 29 30 31 32 43 | 28 29 30 31 32 32 44 | 28 29 31 31 32 33

Dla testu jednostronnego albo HA jest  < 0.5 (w dowolnej parze druga obserwacja ma większą szansę być większa) (Bs = N–), albo HA jest  > 0.5 (w dowolnej parze pierwsza obserwacja ma większą szansę być większa) (Bs = N+)

P-wartość Niech Y ma rozkład dwumianowy (n, 0.5) Gdy HA jest  > 0.5, wtedy Bs = N+, i P-wartość wynosi Pr(Y  Bs ) Gdy HA jest  < 0.5, wtedy Bs = N–, i P-wartość wynosi Pr(Y  Bs ) Gdy HA jest   0.5, wtedy Bs = max(N+, N–), i P-wartość wynosi 2Pr(Y  Bs )

Przykład: przeszczepy skóry Po dwóch stronach ciała 11 ochotników zastosowano przeszczepy skóry. Jeden przeszczep ma dobre dopasowanie HLA z odbiorca, drugi nie. Obserwujemy czas do odrzucenia przeszczepu (nie ma on rozkładu normalnego, więc nie można stosować testu Studenta). Czy dobre dopasowanie HLA zwiększa czas przetrwania przeszczepu ?

dobre 37 19 57 93 16 23 20 63 29 60 18 złe 13 15 26 11 43 42 znak + -

Testu znaków używamy, gdy dane nie mają rozkładu normalnego, lub dane zapisane są w postaci preferencji, a nie wielkości liczbowej, np. lepsze/gorsze, mniejsze/większe itp.

Test znakowany Wilcoxona Podobny do testu znaków, ale bardziej czuły Metoda Liczymy różnice w parach Znajdujemy wartość bezwzględną Przyporządkowujemy rangi wartościom bezwzględnym (1 dla najmniejszej, n dla największej) Każdej randze przyporządkowujemy jej znak (+,-)

W+ : suma rang dodatnich W- : suma rang ujemnych Ws : min(W+, W-) Odrzucamy H0 gdy Ws ≤ wartość krytyczna Tabela wartości krytycznych jest dostępna w kartotece z wykładami. Źródło: http://fsweb.berry.edu/academic/education/vbissonnette/tables/wilcox_t.pdf

Obs Y1 Y2 d |d| Ranga Znakowana 1 33 25 8 6 2 39 38 3 27 -2 4 29 20 9 7 5 50 54 -4 -3 45 40 36 30

Przed & Po vs. Grupa kontrolna Czasami obserwujemy obiekty przed i po pewnym zabiegu i mierzymy wpływ zabiegu na poszczególne obiekty Dostajemy pary zależnych obserwacji Czasem parujemy podobne (ze względu na zmienne zakłócające) obiekty z grupy zabiegowej i kontrolnej Również dostajemy pary zależnych obserwacji

Czasami obiektów w grupie kontrolnej i zabiegowej nie można w naturalny sposób połączyć w pary Takie obserwacje traktujemy jako dwie niezależne próby

Niekiedy oczekujemy, że obiekty w naturalny sposób się zmieniają w trakcie eksperymentu. Chcemy odróżnić zmiany wywołane zabiegiem od zmian wynikających z upływu czasu Obserwujemy grupę zabiegową i kontrolną przed i po zabiegu Obiekty w grupie kontrolnej dostarczają nam informacji, jakiej zmiany należy oczekiwać jedynie w wyniku upływu czasu. Obiekty w grupie zabiegowej dostarczają nam informacji o wpływie zabiegu Cztery grupy obserwacji

Możemy porównać obiekty z grupy zabiegowej przed i po zabiegu za pomocą testu dla par. Podobnie obiekty z grupy kontrolnej możemy porównać przed i po zabiegu za pomocą testu dla par. Dowiemy się czy była zmienność w każdej z grup. Naprawdę interesuje nas jednak porównanie zmian wartości cechy (między grupą zabiegową i kontrolną) Zwykle w takim przypadku analizujemy różnice po-przed za pomocą testu dla dwu niezależnych prób (zabiegowej i kontrolnej)