Wykład 20 Mechanika płynów 9.1 Prawo Archimedesa

Slides:



Advertisements
Podobne prezentacje
Wykład Mikroskopowa interpretacja entropii
Advertisements

Wykład Prawo Coulomba W 1785 roku w oparciu o doświadczenia z ładunkami Charles Augustin Coulomb doszedł do trzech następujących wniosków dotyczących.
5.6 Podsumowanie wiadomości o polu elektrycznym
Wykład Prawo Gaussa w postaci różniczkowej E
Wykład Model przewodnictwa elektrycznego c.d
Wykład Zależność pomiędzy energią potencjalną a potencjałem
Wykład 10 7 Równanie stanu oraz ogólne relacje termodynamiczne
Wykład 3 Opis ruchu 1.1 Zjawisko ruchu 1.2 Układy odniesienia
Wykład 4 2. Przykłady ruchu 1.5 Prędkość i przyśpieszenie c.d.
Wykład Ruch po okręgu Ruch harmoniczny
Wykład 19 Dynamika relatywistyczna
Wykład Równanie ciągłości Prawo Bernoulie’ego
Wykład 21 Mechanika płynów 9.1 Prawo Archimedesa
Wykład 13 Ruch obrotowy Zderzenia w układzie środka masy
Reinhard Kulessa1 Wykład Środek masy Zderzenia w układzie środka masy Sprężyste zderzenie centralne cząstek poruszających się c.d.
Wykład Opis ruchu planet
Kinetyczno-molekularna teoria budowy gazów i cieczy
Mechanika płynów.
FIZYKA dla studentów POLIGRAFII Wykład 9 Mechanika płynów
Płyny Płyn to substancja zdolna do przepływu.
Zastosowanie funkcji eliptycznych w hydrodynamice
Dane INFORMACYJNE Nazwa szkoły:
Płyny – to substancje zdolne do przepływu, a więc są to ciecze i gazy
Siły zachowawcze Jeśli praca siły przemieszczającej cząstkę z punktu A do punktu B nie zależy od tego po jakim torze poruszała się cząstka, to ta siła.
Wykład IX CIECZE.
Wykład 16 Ruch względny Bąki. – Precesja swobodna i wymuszona
Wykład 3 2. I zasada termodynamiki 2.1 Wstęp – rodzaje pracy
Wykład 24 Fale elektromagnetyczne 20.1 Równanie falowe
Elektryczność i Magnetyzm II semestr r. akademickiego 2002/2003
Wykład 17 Ruch względny dla prędkości relatywistycznych
Wykład 22 Ruch drgający 10.1 Oscylator harmoniczny
Wykład Równanie Clausiusa-Clapeyrona 7.6 Inne równania stanu
Wykład Opory ruchu -- Siły tarcia Ruch ciał w płynach
Wykład Moment pędu bryły sztywnej - Moment bezwładności
Wykład Spin i orbitalny moment pędu
Wykład Praca Praca zdefiniowana jest jako ilość energii dostarczanej przez siłę działającą na pewnej drodze i matematycznie jest zapisana jako: (1.1)
Wykład Równania Maxwella Fale elektromagnetyczne
Nazwa szkoły: Publiczne Gimnazjum im. Książąt Pomorza Zachodniego w Trzebiatowie ID grupy: 98/46_MF_G1 Kompetencja: Zajęcia projektowe, komp. Mat.
DYNAMIKA Oddziaływania. Siły..
Napory na ściany proste i zakrzywione
STATYKA PŁYNÓW 1. Siły działające w płynach Siły działające w płynach
Hydromechanika Prezentacja do wykładu 3.
Fizyka – Powtórzenie materiału z kl. I gimnazjum „W świecie materii”
Prawo Archimedesa Dlaczego kaczka pływa, a kamień tonie
1.
A. Krężel, fizyka morza - wykład 3
Fizyka Elementy mechaniki klasycznej. Hydromechanika.
Podstawy mechaniki płynów - biofizyka układu krążenia
WŁAŚCIWOŚCI MATERII Zdjęcie w tle każdego slajdu pochodzi ze strony:
TERMODYNAMIKA – PODSUMOWANIE WIADOMOŚCI Magdalena Staszel
Dynamika.
Elementy hydrodynamiki i aerodynamiki
Przygotowanie do egzaminu gimnazjalnego
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii.
CIŚNIENIE Justyna M. Kamińska Tomasz Rogowski
1.
DANE INFORMACYJNE Cisnienie hydrostatyczne i atmosferyczne
Dynamika punktu materialnego Dotychczas ruch był opisywany za pomocą wektorów r, v, oraz a - rozważania geometryczne. Uwzględnienie przyczyn ruchu - dynamika.
Dynamika ruchu obrotowego
Siły tarcia tarcie statyczne tarcie kinematyczne tarcie toczne
PODSTAWY MECHANIKI PŁYNÓW
3. Siła i ruch 3.1. Pierwsza zasada dynamiki Newtona
STATYKA I DYNAMIKA PŁYNÓW.
Mechanika płynów Naczynia połączone Prawo Pascala.
Prawa ruchu ośrodków ciągłych
1.
SIŁA JAKO PRZYCZYNA ZMIAN RUCHU
Statyczna równowaga płynu
Prawa ruchu ośrodków ciągłych
Statyczna równowaga płynu
Zapis prezentacji:

Wykład 20 Mechanika płynów 9.1 Prawo Archimedesa 9.2 Zależność pomiędzy ciśnieniem a głębokością 9.3 Dynamika cieczy 12.12.2008 Reinhard Kulessa

Mechanika płynów 9.1 Prawo Archimedesa Ciecze są substancjami, które nie podlegają odkształceniu postaci. Jeśli chcemy ciecz odkształcić, to warstwy cieczy ślizgają się jedna po drugiej. Ta właściwość pozwala cieczy płynąc i zmieniać kształt. Mechanika cieczy zajmuje się właściwościami cieczy na poziomie makroskopowym. Wielkościami mierzonymi są ciśnienie,temperatura i objętość. Element objętości cieczy jest wielkością makroskopową i nie ma nic wspólnego z pojedyncza cząsteczką. Statyka cieczy zajmuje się przypadkami, kiedy środek masy każdego elementu objętości cieczy posiada zerową prędkość i przyśpieszenie. Taka ciecz znajduje się w spoczynku lub inaczej mówiąc w równowadze hydrostatycznej. 12.12.2008 Reinhard Kulessa

Jedną z najważniejszych właściwości cieczy znajdujących się w równowadze hydrostatycznej formułuje Prawo Archimedesa. Ciało zanurzone w cieczy doznaje wyporu, który jest równy ciężarowi cieczy wypartej przez to ciało. C – gęstość cieczy - gęstość ciała V – objętość ciała FC = Vg FW= CVS g W związku z istnieniem prawa Archimedesa możliwe jest pływanie ciał. Dla równowagi mamy; W=CVSg mg = Vg } { V VS , czyli CVSg= Vg . 12.12.2008 Reinhard Kulessa

9.2 Zależność pomiędzy ciśnieniem a głębokością Na każdy metr kwadratowy powierzchni Ziemi działa siła 105 N (11 ton). Jest to ciężar powietrza nad Ziemią. Ciężar powietrza dzielony przez powierzchnię na którą powietrze działa nazywamy ciśnieniem atmosferycznym. Również zanurzając się w cieczy doznaje się coraz większego ciśnienia. S dz pS (p+dp)S dFC z dz 12.12.2008 Reinhard Kulessa

Dla równowagi hydrostatycznej; Z drugiej strony . Dla równowagi hydrostatycznej; Otrzymujemy więc, . . (9.1) Z równania tego możemy odczytać, że jeśli zmieni się ciśnienie na powierzchni cieczy, to zmieni się ono o tyle samo na każdej głębokości. 12.12.2008 Reinhard Kulessa

Przy omawianiu cieczy ograniczymy się do specjalnego 9.3 Dynamika cieczy Aby omówić dynamikę cieczy możemy oprzeć się na tym co powiedzieliśmy o ruchu środka masy. Każdy makroskopowy element objętości cieczy możemy traktować jako cząstkę o danym środku ciężkości. Prędkość v tej cieczy jest opisany przez prędkość środka masy „cząstek” cieczy. Prędkość cieczy może zmieniać się zarówno ze zmianą położenia, jak i z upływem czasu, co w ogólności możemy napisać jako; Musimy również zaznaczyć, że siły wewnętrzne na wskutek III zasady dynamiki Newtona znoszą się. Przy omawianiu cieczy ograniczymy się do specjalnego przypadku tzw. cieczy bezwirowych 12.12.2008 Reinhard Kulessa

Ograniczymy się również do cieczy nielepkich. Są to ciecze, które zachowują się tak jak ciecz w lewej części rysunku. Brak rotacji przepływ rotacja Ograniczymy się również do cieczy nielepkich. Rozróżnimy gazy i ciecze pod względem zdolności do ich kompresji. Ograniczymy się do cieczy nieściśliwych. 12.12.2008 Reinhard Kulessa

Następnym warunkiem, który rozważana ciecz musi spełniać będzie jej laminarny przepływ. Oznacza to, że pojedyncze warstwy cieczy przesuwają się po sobie nie mieszając się. Definiujemy sobie również linie prądu , które w każdym miejscu są równoległe do prędkości cieczy. A B C D vA vB vC Prędkość będziemy ogólnie zapisywać tak jak zrobiliśmy to na stronie 11. 12.12.2008 Reinhard Kulessa

Matematycznie ciecz bezwirową definiujemy jako ciecz dla Linie prądu nigdy się nie przecinają, gdyż w przeciwnym przypadku prędkości z nimi związane miałyby w punkcie przecięcia różne kierunki. Oznaczałoby to, że prędkość w jednym punkcie ma dwie różne wartości. v1 v2 Matematycznie ciecz bezwirową definiujemy jako ciecz dla której rot v = 0. 12.12.2008 Reinhard Kulessa