Wykład 3 Opis ruchu 1.1 Zjawisko ruchu 1.2 Układy odniesienia

Slides:



Advertisements
Podobne prezentacje
WYKŁAD 2 I. WYBRANE ZAGADNIENIA Z KINEMATYKI II. RUCH KRZYWOLINIOWY
Advertisements

Wykład Mikroskopowa interpretacja entropii
Wykład Prawo Coulomba W 1785 roku w oparciu o doświadczenia z ładunkami Charles Augustin Coulomb doszedł do trzech następujących wniosków dotyczących.
5.6 Podsumowanie wiadomości o polu elektrycznym
Wykład Prawo Gaussa w postaci różniczkowej E
Wykład Model przewodnictwa elektrycznego c.d
Wykład Transformacja Lorentza
Wykład Zależność pomiędzy energią potencjalną a potencjałem
Wykład 24 Ruch falowy 11.1 Fala jednowymiarowa
Wykład Drgania wymuszone oscylatora Przypadek rezonansu
Wykład 4 2. Przykłady ruchu 1.5 Prędkość i przyśpieszenie c.d.
Wykład Ruch po okręgu Ruch harmoniczny
Wykład 19 Dynamika relatywistyczna
Wykład Równanie ciągłości Prawo Bernoulie’ego
Wykład 13 Ruch obrotowy Zderzenia w układzie środka masy
Wykład Efekt Dopplera Znaczenie ośrodka
Wykład 20 Mechanika płynów 9.1 Prawo Archimedesa
Wykład Równania Maxwella Fale elektromagnetyczne
Reinhard Kulessa1 Wykład Środek masy Zderzenia w układzie środka masy Sprężyste zderzenie centralne cząstek poruszających się c.d.
Wykład Opis ruchu planet
Kinematyka Definicje podstawowe Wielkości pochodne
Ruch i jego parametry Mechanika – prawa ruchu ciał
Kinematyka punktu materialnego
Temat: Ruch jednostajny
Podstawowy postulat szczególnej teorii względności Einsteina to:
Ruch i jego parametry Mechanika – prawa ruchu ciał
KINEMATYKA Kinematyka zajmuje się związkami między położeniem, prędkością i przyspieszeniem badanej cząstki – nie obchodzi nas, skąd bierze się przyspieszenie.
Kinematyka.
Wykład 16 Ruch względny Bąki. – Precesja swobodna i wymuszona
Wykład 24 Fale elektromagnetyczne 20.1 Równanie falowe
Elektryczność i Magnetyzm II semestr r. akademickiego 2002/2003
Wykład 17 Ruch względny dla prędkości relatywistycznych
Wykład Impedancja obwodów prądu zmiennego c.d.
Wykład Równanie Clausiusa-Clapeyrona 7.6 Inne równania stanu
Wykład Opory ruchu -- Siły tarcia Ruch ciał w płynach
Wykład Moment pędu bryły sztywnej - Moment bezwładności
Wykład Spin i orbitalny moment pędu
Wykład Równania Maxwella Fale elektromagnetyczne
Wykład 2 4. Ładunki elektryczne
Dane INFORMACYJNE Nazwa szkoły: ZESPÓŁ SZKÓŁ w BACZYNIE ID grupy:
FIZYKA dla studentów POLIGRAFII Wykład 2
Zjawiska ruchu Ruch – jedno w najczęściej obserwowanych zjawisk fizycznych Często ruch zachodzi z tak dużą lub tak małą prędkością i w tak krótkim lub.
Nieinercjalne układy odniesienia
Kinematyka SW Sylwester Wacke
Ruch i jego opis Powtórzenie.
Wykład 3 Dynamika punktu materialnego
MECHANIKA 2 Wykład Nr 11 Praca, moc, energia.
podsumowanie wiadomości
Bez rysunków INFORMATYKA Plan wykładu ELEMENTY MECHANIKI KLASYCZNEJ
MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW
Z Wykład bez rysunków ri mi O X Y
Dynamika układu punktów materialnych
Ruch – zachodząca w czasie zmiana położenia jednego ciała względem innych ciał.
RUCH KULISTY I RUCH OGÓLNY BRYŁY
PLAN WYKŁADÓW Podstawy kinematyki Ruch postępowy i obrotowy bryły
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Kinematyka zajmuje się ilościowym badaniem ruchu ciał z pominięciem czynników fizycznych wywołujących ten ruch. W mechanice technicznej rozważa się zagadnienia.
Ruch jednostajny prostoliniowy i jednostajnie zmienny Monika Jazurek
Elementy ruchu Względność ruchu.
Ruch jednowymiarowy Ruch - zmiana położenia jednych ciał względem innych, które nazywamy układem odniesienia. Uwaga: to samo ciało może poruszać się względem.
Dynamika punktu materialnego Dotychczas ruch był opisywany za pomocą wektorów r, v, oraz a - rozważania geometryczne. Uwzględnienie przyczyn ruchu - dynamika.
Ruch – jedno w najczęściej obserwowanych zjawisk fizycznych
Ruch – jedno w najczęściej obserwowanych zjawisk fizycznych Zjawiska ruchu Często ruch zachodzi z tak dużą lub tak małą prędkością i w tak krótkim lub.
Zjawiska ruchu Ruch – jedno w najczęściej obserwowanych zjawisk fizycznych Często ruch zachodzi z tak dużą lub tak małą prędkością i w tak krótkim lub.
Dynamika bryły sztywnej
Wówczas równanie to jest słuszne w granicy, gdy - toru krzywoliniowego nie można dokładnie rozłożyć na skończoną liczbę odcinków prostoliniowych. Praca.
1.
3. Siła i ruch 3.1. Pierwsza zasada dynamiki Newtona
FIZYKA dla I roku biotechnologii, studia I stopnia
2. Ruch 2.1. Położenie i tor Ruch lub spoczynek to pojęcia względne.
Zapis prezentacji:

Wykład 3 Opis ruchu 1.1 Zjawisko ruchu 1.2 Układy odniesienia 1.3 Położenie i tor 1.4 Prędkość średnia Reinhard Kulessa

Opis ruchu 1.1 Zjawisko ruchu Ruch jest najczęściej obserwowanym zjawiskiem fizycznym wokół nas. Poruszają się zwierzęta, światło, maszyny, samochody, Ziemia, Księżyc, satelity, elektrony w przewodniku, i wiele innych ciał. Na ruch ciała mają wpływ inne ciała znajdujące się w otoczeniu. Ażeby dokładnie opisać ruch konieczne jest uwzględnienie oddziaływania ciał z otoczeniem. Istnieją pewne ogólne prawa i zasady stosujące się do wszelkich ruchów ciał materialnych, niezależnych od oddziaływania tego ciała z otoczeniem. Prawami tymi zajmuje się mechanika. Reinhard Kulessa

Badaniem ruchu z uwzględnieniem jego przyczyn, zajmuje się dynamika. Dział mechaniki, który podaje opis przestrzenno-czasowych właściwości ruchu nazywamy kinematyką, przy czym zaniedbujemy tutaj przyczyny powodujące ruch. Badaniem ruchu z uwzględnieniem jego przyczyn, zajmuje się dynamika. 1.2 Układy odniesienia Jakieś zdarzenie fizyczne w określonym miejscu definiujemy przez podanie dokładnej informacji o miejscu i czasie, w którym to nastąpiło. Z A B Reinhard Kulessa

Wektor wykreślony od obserwatora A do zdarzenia Z określa nam pozycję zdarzenia w stosunku do obserwatora A. Równocześnie inny obserwator B obserwujący w tym samym czasie zdarzenie Z określi pozycję zdarzenia przez wektor r2 . Różni obserwatorzy, rozmieszczeni w różnych miejscach, podają miejsce w którym zachodzi zdarzenie Z przy pomocy różnych wektorów. Określenie miejsca jakiegoś zdarzenia jest więc względne i zależy od pozycji obserwatora. Powtórzmy jeszcze raz, że w mechanice Newtonowskiej zakładamy, że czas jest wielkością uniwersalną i absolutną i przebiega w ten sam sposób dla wszystkich obserwatorów. Wszyscy oni również przyjmują to samo zero czasu. Pomiar czasu będzie więc dla wszystkich obserwatorów taki sam. Reinhard Kulessa

Jeśli obserwator zarejestruje Ażeby opisać dwa zdarzenia obserwator musi zarejestrować miejsce każdego z nich, oraz odpowiedni czas. Jeśli obserwator zarejestruje miejsce zdarzeń i i f, oraz ich czasy ti i tf , to równania i f ri ti rf tf (1.1) określają wektor przesunięcia dla tych zdarzeń, oraz przedział czasowy pomiędzy nimi. Wektor r określa odległość między zdarzeniami i i f, oraz kierunek od i do f. Okazuje się, że wektor przesunięcia może być taki sam dla kilku różnych obserwatorów umiejscowionych w różnych miejscach Reinhard Kulessa

A B C riA rfA riB rfB i f Jeśli mamy trzech obserwatorów, których względna pozycja się nie zmienia, każdy z nich określi zdarzenie i i f przez inne wektory. Jednak przesunięcie od punktu i do f będzie dla wszystkich obserwatorów takie same. Również czas jaki upłynie od zdarzenia i do f będzie dla wszystkich obserwatorów taki sam. Reinhard Kulessa

Możemy stwierdzić ogólnie, że każdy inny obserwator D nie zmieniający swojej pozycji względem obserwatorów A, B i C zaobserwuje to samo przesunięcie się np. satelity r i ten sam przedział czasu pomiędzy i a f. Ten zbiór obserwatorów określa pewien układ odniesienia. Możemy więc powiedzieć, że układem odniesienia nazywamy zbiór obserwatorów znajdujących się w stałych pozycjach względem siebie. Obserwatorzy, którzy znajdują się względem siebie w ruchu nie należą do tego samego układu odniesienia ( na przykład spadające jabłko widziane z zewnątrz i z jabłka). Rozważmy jeszcze obserwatora O, który ulega przemieszczeniu S względem nieruchomego obserwatora C w pewnym układzie odniesienia między chwilami ti i tf , nie należy do tego układu odniesienia. Reinhard Kulessa

Dla obserwatora C punkt i określa początkową pozycję f i’ O’ S rO rC Dla obserwatora C punkt i określa początkową pozycję ruchu ciała zarówno w chwili ti jak i tf. Dla obserwatora O punkt i odpowiada położeniu ciała w chwili ti, ale w chwili tf położenie początkowe wynosi i’. Ponieważ obydwaj obserwatorzy otrzymują w chwili t = tf różne położenie początkowe ciała, wielkości rC i rO różnią się co do wielkości i kierunku. Reinhard Kulessa

Z pośród wszystkich układów odniesienia wyróżniają się tzw. Układ odniesienia może być opisany przez odpowiedni układ współrzędnych, w którym obserwatora identyfikuje się przez współrzędne. Jeden obserwator jest zwykle umieszczony w początku układu współrzędnych. Z pośród wszystkich układów odniesienia wyróżniają się tzw. układy inercjalne. Układ odniesienia nazywamy inercjalnym, jeżeli każda cząstka znajdująca się w tym układzie w spoczynku pozostaje w spoczynku, a każda cząstka, która się w tym układzie porusza, nie zmienia ani prędkości ruchu, ani jego kierunku Przemieszczenie, oraz przedziały czasowe, są fundamentalnymi wielkościami nauki o ruchu, czyli kinematyki. Reinhard Kulessa

oznaczają wektory jednostkowe poszczególnych osi. 1.3 Położenie i tor Jeżeli w odpowiednim układzie współrzędnych chcemy podać położenie punktu to możemy to uczynić definiując tzw. wektor wodzący, albo też wektor położenia. z Promień wodzący r możemy podać w różny sposób: x y   r P z oznaczają wektory jednostkowe poszczególnych osi. Reinhard Kulessa

Wersory możemy również zapisywać na różne sposoby Wersory możemy również zapisywać na różne sposoby. W trakcie tego wykładu używać będziemy wersji drugiej, czyli i z daszkiem. x, y i z są współrzędnymi kartezjańskimi. Współrzędne punktu P możemy również zapisać we współrzędnych sferycznych. Reinhard Kulessa

Równania współrzędnych zależnych od czasu są następujące: Gdy położenie obserwowanego obiektu się zmienia, promień wodzący r staje się funkcją czasu: (1.1) Równania współrzędnych zależnych od czasu są następujące: Równania te są równocześnie równaniami parametrycznymi toru. Reinhard Kulessa

W zależności od tego, czy tor jest linią krzywą czy prostą, mówimy o ruchu krzywoliniowym lub prostoliniowym. z P(x,y,z) tor x y r(t) Eleminując czas z równań toru, znajdujemy kształt toru zakreślanego przez poruszający się punkt P . Reinhard Kulessa

Rozważmy osobę obserwującą lot ptaka i znajdująca się w 1.4 Prędkość średnia Rozważmy osobę obserwującą lot ptaka i znajdująca się w początku pewnego układu współrzędnych. ri, ti rf, tf r W czasie t = ti – tf ptak przemieścił się o r = rf – ri . Średnią prędkością nazywamy wektor zdefiniowany następująco: Kierunek tej prędkości jest zgodny z kierunkiem wektora r . Reinhard Kulessa

Powyższa animacja pokazuje taką sytuację. Przykładem ruchu dla którego celowe jest określenie prędkości średniej jest ruch samochodu w mieście. Nie zawsze „zielona fala” umożliwia ruch samochodu ze stałą prędkością. Powyższa animacja pokazuje taką sytuację. Reinhard Kulessa

Rozważmy również jaka będzie prędkość pływaka w basenie, który płynie tam i z powrotem. Średnia prędkość dla pływaka jest równa zero, wynika to z wektorowego charakteru prędkości średniej. W takich przypadkach podaje się jako prędkość średnią wartość skalarną. tf rf ti ri odległość czas Reinhard Kulessa