Analiza danych eksperymentalnych Wszystkie wyniki pomiarów, włączając te uzyskane instrumentem o bardzo dużej precyzji i przy wysokiej dbałości eksperymentalnej, nie są dokładne, lecz mają przybliżony charakter. Przyczyny niepewności wyników eksperymentu: błędy grube błędy systematyczne błędy przypadkowe
Błąd gruby wynika z niedbałości lub ewidentnej pomyłki eksperymentatora, wyraźnej niesprawności sprzętu albo nieoczekiwanego zaburzenia układu pomiarowego objawia się istnieniem jednego wyniku znacząco odstającego od pozostałych, uzyskanych w danej serii pomiarów wynik pomiaru obarczony błędem grubym jest zazwyczaj łatwo zauważalny i należy go odrzucić.
BŁĘDY „GRUBE” ODRZUCAMY błąd gruby x0 – wartość prawdziwa xi – wyniki pomiarów (oznaczone symbolem ) BŁĘDY „GRUBE” ODRZUCAMY ppm = g/g 23,3 ppm; 24,5 ppm; 27,9 ppm ; 33,5 ppm; 0,02 ppm W wątpliwych sytuacjach trzeba stosować czasami skomplikowane testy statystyczne !!!!
Błąd systematyczny błąd polegający na stałym lub zmiennym, systematycznym odchyleniu wyniku pomiaru od rzeczywistej wartości wielkości mierzonej przesunięcie wyniku następuje zwykle w tę sama stronę metody statystyczne nie mają tu zastosowania.
Oddziaływania systematyczne: niedoskonałość przyrządów pomiarowych błędne wyskalowanie, niewyzerowanie błąd paralaksy w analityce – złe wzorce nieuwzględnienie zmiany warunków pomiaru do warunków skalowania (inne warunki pomiaru próbki i wzorca)
Błędy (niepewności) systematyczne x0 – wartość prawdziwa xi – wyniki pomiarów (oznaczone symbolem ) Z błędem systematycznym mamy do czynienia, gdy przy powtarzaniu pomiaru występuje ta sama różnica między wartościami zmierzonymi a wartością rzeczywistą, natomiast rozrzut wyników poszczególnych pomiarów jest mały. Błędy te są powodowane oddziaływaniami systematycznymi
Błędy przypadkowe powstaje na skutek działania czynników losowych jest miarą rozrzutu otrzymywanych wyników wokół wartości najbardziej prawdopodobnej. błędu przypadkowego w zasadzie nie da się wyeliminować a także nie da się go oszacować przed dokonaniem pomiaru staramy się tak zaprojektować i przeprowadzić pomiar, aby wartość błędu przypadkowego była jak najmniejsza po zakończeniu pomiaru dokonujemy oceny wielkości błędu losowego przy użyciu narzędzi statystycznych.
Oddziaływania przypadkowe: niedokładność odczytu (niedokładna ocena części działki miernika, niezbyt staranne wyznaczenie optimum ostrości obrazu w pomiarach optycznych) fluktuacja warunków pomiaru (temperatura, ciśnienie, wilgotność, napięcie w sieci elektrycznej) obecność źródeł zakłócających; nieokreśloność mierzonej wielkości; niedoskonałość zmysłów obserwatora;
Błędy (niepewności) przypadkowe x0 – wartość prawdziwa xi – wyniki pomiarów (oznaczone symbolem ) Błąd przypadkowy spowodowany jest losowym odchyleniem wyniku pomiaru od wartości rzeczywistej. Fluktuacje czasowe i przestrzenne wielkości nie mierzonej. Charakter losowy. Źródłem błędów przypadkowych są tzw. oddziaływania przypadkowe:
„Dane należy torturować tak długo, aż zaczną zeznawać”* * - Napotkane w sieci internetowej
W pomiarach bezpośrednich W pomiarach pośrednich WIELKOŚCI MIERZONE W pomiarach bezpośrednich W pomiarach pośrednich Pomiar kilku wielkości x1,x2,…xn Obliczenie wielkości pośredniej zgodnie ze wzorem funkcyjnym: y=f(x1,x2,…xn) Na przykład pomiar okresu drgań i długości wahadła matematycznego. Obliczenie wartości przyspieszenia ziemskiego g. Pomiar jednej wielkości (np. pomiar masy ciała, pomiar temperatury, itd.
l, T – wielkości wejściowe, zmierzone w pomiarach bezpośrednich, mają swoje niepewności Czy wzór powyższy jest słuszny w każdych warunkach? Jak policzyć niepewność g? Pomiar wielkości T nie wpływa na pomiar wielkości l (wielkości nieskorelowane)
TYPU A TYPU B Zgodnie z Przewodnikiem niepewności klasyfikujemy na dwie kategorie w zależności od metody ich obliczania: TYPU A TYPU B
BŁĄD NIEPEWNOŚĆ Omyłka, uchyb, błąd*), niepewność SYNONIMY? * - Asystent zwraca się do studentki: A z jakim błędem wyznaczyła Pani grubość próbki? Studentka: No, wie Pan! Ja nie robię błędów Anegdota (podobno autentyczna). Przeczytane w pracy: Marek W.Gutowski: Wykład wprowadzający do zajęć na I Pracowni Fizycznej
METODA TYPU A Błędy (niepewności) przypadkowe Metoda szacowania niepewności, która opiera się na obliczeniach statystycznych (statystyczna analiza serii pomiarów – n 4)
METODA TYPU B Błędy (niepewności) systematyczne Metoda szacowania niepewności, która Wykorzystuje inne metody niż statystyczne: doświadczenie eksperymentatora porównanie z wcześniej wykonywanymi podobnymi pomiarami certyfikat producenta wykorzystywanych w pomiarach przyrządów analiza materiału wzorcowego (odniesienia) Najczęściej pomiar jednokrotny
OCENA NIEPEWNOŚCI TYPU A W POMIARACH BEZPOŚREDNICH Wykonujemy serię (skończoną) pomiarów Wielkością najbardziej prawdopodobną jest średnia arytmetyczna : 3. Niepewność standardowa pojedynczego pomiaru u(x) (tzw. odchylenie standardowe pojedynczego pomiaru Sx)
Eksperymentatora bardziej interesuje niepewność wyniku czyli wartości średniej Niepewność standardowa średniej:
OCENA NIEPEWNOŚCI TYPU A W POMIARACH POŚREDNICH (*) x1, x2,…,xK – wielkości wejściowe nieskorelowane, każde określone w pomiarach bezpośrednich. Znamy: oraz niepewności standardowe średnich: PYTANIE 1. Jak obliczyć wielkość y ? PYTANIE 2. Jak obliczyć niepewność standardową wielkości y ?
Schemat przenoszenia wielkości wejściowych 1. Schemat przenoszenia wielkości wejściowych
Schemat przenoszenia niepewności 2. Niepewność y nazywa się złożoną niepewnością standardową (ang. combined standard uncertainty) Schemat przenoszenia niepewności wielkości wejściowych
METODA TYPU B Metoda szacowania niepewności wykorzystująca inne metody niż statystyczne: wcześniejsze doświadczenie eksperymentatora specyfikacja producenta odnośnie używanego w pomiarach przyrządu (klasa przyrządu) z kalibracji (wcześniej wykonanej) badania na materiale odniesienia (chemia analityczna) Najczęściej jeden lub dwa pomiary
Parametry metrologiczne aparatury: Klasa przyrządu K (dana przez producenta) Niepewność pomiaru wynikająca z klasy przyrządu kx: Dla woltomierza klasy 0,2 na zakresie 50 V popełniamy „błąd” kx = 0,1 V
Rozdzielczość przyrządu : Dla pomiarów długości: 1 mm dla linijki ; 0,1 mm dla suwmiarki; 0,01 mm dla śruby mikrometrycznej Dla pomiarów temperatury: 0,1 °C dla termometru lekarskiego; 10 °C dla termometru „zaokiennego” Dla mierników wychyłowych – „odstęp” pomiędzy kreskami (ew. połowa)
Rozdzielczość przyrządu: Dla mierników analogowych - zmiana ostatniej cyfry np. 5,23 V ( niepewność 0,01 V) Niepewność wynikająca z rozdzielczości aparatury d Maksymalna (graniczna) niepewność pomiaru szacowana metodą typu B wynosi:
OCENA NIEPEWNOŚCI TYPU B W POMIARACH POŚREDNICH x1 y x2 xK x1, x2, …,xK – wielkości pomiarów jednokrotnych
Maksymalna (graniczna) niepewność pomiaru g(y) może być oszacowana tzw. metodą różniczki zupełnej gx1 gx2 g(y) gxK UWAGA: Metoda „różniczki zupełnej” prowadzi do zawyżonych wyników niepewności (zwłaszcza dla K> 3)
Standardowa niepewność całkowita A w jaki sposób obliczyć niepewność wielkości, która uzależniona jest od oddziaływań systematycznych i przypadkowych ? Standardowa niepewność całkowita
PAMIĘTAJ !!! Do obliczania wielkości pośrednich i niepewności używaj wielkości niezaokrąglonych
Jak przedstawiać wyniki końcowe?
Przedstawianie błędów pomiarowych i zaokrąglanie wyników W ogólnym przypadku wynik pomiaru przedstawiamy w postaci: XR = XM ± ΔX gdzie: XR - wartość rzeczywista wielkości mierzonej, XM - wartość uzyskana w wyniku pomiaru, ΔX - niepewność lub błąd pomiaru. Powyższy zapis oznacza, że: - najlepszym przybliżeniem wartości mierzonej jest według eksperymentatora liczba XM ; - z rozsądnym prawdopodobieństwem szukana wartość znajduje się gdzieś pomiędzy Xm - ΔX i Xm + ΔX.
Przedstawianie błędów pomiarowych i zaokrąglanie wyników II Błąd pomiaru ΔX jest wielkością oszacowaną. Nie ma więc sensu podawać wszystkich cyfr, które otrzymujemy z obliczeń. Obliczone wartości Xm i ΔX podajemy zaokrąglone. Oznacza to, że przybliżamy wartości otrzymane z obliczeń. Cyframi znaczącymi danej liczby różnej od zera nazywamy wszystkie jej cyfry z wyjątkiem występujących na początku zer. Do cyfr znaczących zalicza się również zera końcowe, jeśli są one wynikiem obliczeń, a nie zaokrągleń. Oznacza to, że pierwsza liczba znacząca musi być różna od zera, natomiast druga, trzecia i dalsze mogą być zerami.
Przedstawianie błędów pomiarowych i zaokrąglanie wyników III Przy zaokrąglaniu wyniku pomiaru stosowane są powszechnie przyjęte zasady zaokrągleń : liczbę kończącą się cyframi 0-4 zaokrąglamy w dół, a 5 - 9 w górę . Oszacowane błędy zaokrąglamy zawsze w górę, ponieważ w żadnym przypadku nie wolno pomniejszać błędów. Zawsze lepiej podać zawyżoną wartość błędu niż go niedoszacować . Obliczenia wykonujemy zawsze z większą liczbą cyfr, niż chcemy podać wynik. Zaokrągleń dokonujemy dopiero po zakończeniu obliczeń. Błędy pomiarów zaokrąglane są do pierwszej cyfry znaczącej (wyjątek: 1, 2). Ostatnia cyfra znacząca w każdym wyniku pomiaru powinna stać na tym samym miejscu dziesiętnym, co błąd pomiaru.
DLACZEGO MUSIMY ZAOKRĄGLAĆ BŁĘDY I WYNIKI KOŃCOWE: PRZYKŁAD: Pewien eksperymentator wykonał kilkaset pomiarów grubości włosa i uzyskał wynik: 100,543678723411 5,8002341789443 m rozmiar jądra rozmiar kwarka rozmiar atomu
3. W zależności od wartości tej cyfry postępujemy według następujących zasad:
ZAPAMIĘTAJ ! PRAWIDŁOWO ZAOKRĄGLONE: WARTOŚĆ WIELKOŚCI FIZYCZNEJ I JEJ NIEPEWNOŚĆ MAJĄ TAKĄ SAMĄ ILOŚĆ MIEJSC DZIESIĘTNYCH !
PRAWIDŁOWO: 36,35 0,04 0C 2,5 0,4 kg 3,7110-2 0,02 10-2 m NIEPRAWIDŁOWO: 36,35 0,04 2,51 0,4 kg 3,7110-2 0,023 10-2 m 12,34567 0,22643 Bq
PRECYZJA A DOKŁADNOŚĆ ?
STRZELAMY DO TARCZY
Dziękuję za uwagę