Elementy Elektroniczne

Slides:



Advertisements
Podobne prezentacje
Tranzystory Tranzystory bipolarne Tranzystory unipolarne bipolarny
Advertisements

Diody półprzewodnikowe i ich zastosowanie
Cele wykładu Celem wykładu jest przedstawienie: konfiguracji połączeń,
Elementy Elektroniczne
ELEMENTY ELEKTRONICZNE
Elementy Elektroniczne
Tranzystor Trójkońcówkowy półprzewodnikowy element elektroniczny, posiadający zdolność wzmacniania sygnału elektrycznego. Nazwa tranzystor pochodzi z angielskiego.
Tranzystor polowy, tranzystor unipolarny, FET
Elementy nieliniowe Nieliniowość tych elementów jest związana z fizyką transportu nośników ładunku w tych elementach dielektryki, isolatory Ga, As Si półprzewodniki.
FIZYKA dla studentów POLIGRAFII Elektrostatyka
Wykład III ELEKTROMAGNETYZM
kontakt m-s, m-i-s, tranzystory polowe
Złącze P-N.
PARAMETRY WZMACNIACZY
WZMACNIACZE PARAMETRY.
ELEKTROTECHNIKA z elementami ELEKTRONIKI
Prezentację wykonała: mgr inż. Anna Jasik
Sprzężenie zwrotne Patryk Sobczyk.
Mateusz Wieczorkiewicz
Wykonał Artur Kacprzak kl. IVaE
Podstawy teorii przewodnictwa
Kiedy półprzewodniki stają się przewodnikami i izolatorami?
Luminescencja w materiałach nieorganicznych Wykład monograficzny
FIZYCZNE PODSTAWY MIKROTECHNOLOGII
Wykład 10.
Nośniki nadmiarowe w półprzewodnikach cd.
Złącza półprzewodnikowe
Wykład V Półprzewodniki samoistne i domieszkowe.
TRANZYSTOR BIPOLARNY.
Wykład Półprzewodniki Pole magnetyczne
Fotodiody MPPC Michał Dziewiecki Politechnika Warszawska
Lasery i diody półprzewodnikowe
Optoelectronics Podstawy Fotoniki Fotodetektory.
Temat: Fotorezystor Fotodioda Transoptor.
Materiały Półprzewodnikowe
Materiały Półprzewodnikowe
DETEKTORY I MIESZACZE.
SPRZĘŻENIE ZWROTNE.
Diody półprzewodnikowe
Zjawisko fotoelektryczne
WŁAŚCIWOŚCI PÓŁPRZEWODNIKÓW
TRANZYSTORY POLOWE – JFET
Tranzystory z izolowaną bramką
Wykład VI Twierdzenie o wzajemności
FIZYKA Prąd elektryczny
Tyrystory.
Główną częścią oscyloskopu jest Lampa oscyloskopowa.
ELEKTROSTATYKA I PRĄD ELEKTRYCZNY
DIODA.
Politechnika Rzeszowska
Politechnika Rzeszowska
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Rezystancja przewodnika
3. Elementy półprzewodnikowe i układy scalone c.d.
3. Elementy półprzewodnikowe i układy scalone
Półprzewodniki i urządzenia półprzewodnikowe
TECHNOLOGIE MIKROELEKTRONICZNE Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, Gliwice (
TECHNOLOGIE MIKROELEKTRONICZNE Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, Gliwice (
Półprzewodniki r. Aleksandra Gliniany.
Półprzewodniki i urządzenia półprzewodnikowe
Fizyka Prezentacja na temat: „Półprzewodniki i urządzenia półprzewodnikowe” MATEUSZ DOBRY Kraków, 2015/2016.
TECHNOLOGIE MIKROELEKTRONICZNE Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, Gliwice (
TECHNOLOGIE MIKROELEKTRONICZNE Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, Gliwice (
DOMIESZKOWANIE DYFUZYJNE
Dioda detekcyjna.
WYTWARZANIE WARSTW DWUTLENKU KRZEMU
DOMIESZKOWANIE DYFUZJA
2. ZJAWISKA KONTAKTOWE Energia elektronów w metalu
3. DIODY Są to przyrządy dwukońcówkowe, gdzie obszarem roboczym jest złącze. Ogólny symbol graficzny Przykładając + do anody wymuszamy prąd przewodzenia.
Zapis prezentacji:

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) DIODA PÓŁPRZEWODNIKOWA ANODA KATODA

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) ZŁĄCZE P-N półprzewodnik typ p (dominujące przew. dziurowe) pp – dziury, nośniki większościowe np – elektrony, nośniki mniejszościowe NA(-) – zjonizowane ujemnie akceptory (nieruchome)

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) ZŁĄCZE P-N półprzewodnik typ n (dominujące przew. elektronowe) nn – elektrony, nośniki większościowe pn – dziury, nośniki mniejszościowe ND(+) – zjonizowane dodatnio donory (nieruchome)

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) ZŁĄCZE P-N p n półprzewodnik typ p półprzewodnik typ n xj „złącze technologiczne”

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) ZŁĄCZE P-N Złącze p-n jest formowane w materiałach półprzewodnikowych przy wykorzystaniu specjalnych operacji technologicznych, takich jak: domieszkowanie dyfuzyjne, implantacja jonów, epitaksja. Formowanie złącza p-n jest podstawową operacją przy wytwarzaniu struktur półprzewodnikowych, czy układów scalonych

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) ZŁĄCZE P-N Złącze skokowe Warstwa EPI typu p podłoże (Si) typu n N ND NA xj x

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) ZŁĄCZE P-N Złącze liniowe Warstwa dyfuzyjna typu p podłoże (Si) typu n N NA ND xj x

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) USTALANIE SIĘ STANU RÓWNOWAGI W NIESPOLARYZOWANYM ZŁĄCZU P-N

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) USTALANIE SIĘ STANU RÓWNOWAGI W NIESPOLARYZOWANYM ZŁĄCZU P-N p n xj

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) USTALANIE SIĘ STANU RÓWNOWAGI W NIESPOLARYZOWANYM ZŁĄCZU P-N p n xj

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) USTALANIE SIĘ STANU RÓWNOWAGI W NIESPOLARYZOWANYM ZŁĄCZU P-N p n xj

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) USTALANIE SIĘ STANU RÓWNOWAGI W NIESPOLARYZOWANYM ZŁĄCZU P-N Istnienie gradientu koncentracji nośników jest przyczyną dyfuzji: elektronów z obszaru typu n do obszaru typu p dziur z obszaru typu p do obszaru typu n

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) USTALANIE SIĘ STANU RÓWNOWAGI W NIESPOLARYZOWANYM ZŁĄCZU P-N p n dyfuzyjny strumień elektronów (nośniki większościowe) dyfuzyjny strumień dziur (nośniki większościowe) xj

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) USTALANIE SIĘ STANU RÓWNOWAGI W NIESPOLARYZOWANYM ZŁĄCZU P-N p n -xp xj +xn

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) USTALANIE SIĘ STANU RÓWNOWAGI W NIESPOLARYZOWANYM ZŁĄCZU P-N W wyniku dyfuzyjnego przepływu nośników większościowych obszar w pobliżu złącza zastaje zubożony w nośniki. Przyjmuje się, że obszar pomiędzy współrzędnymi (-xp) i (+xn) jest całkowicie pozbawiony nośników W obszarze zubożonym pozostają nieskompensowane ładunki zjonizowanych donorów i akceptorów

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) USTALANIE SIĘ STANU RÓWNOWAGI W NIESPOLARYZOWANYM ZŁĄCZU P-N E p n -xp xj +xn

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) USTALANIE SIĘ STANU RÓWNOWAGI W NIESPOLARYZOWANYM ZŁĄCZU P-N W konsekwencji w obszarze zubożonym, pomiędzy współrzędnymi (-xp) i (+xn), pojawia się: pole elektryczne o natężeniu E

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) USTALANIE SIĘ STANU RÓWNOWAGI W NIESPOLARYZOWANYM ZŁĄCZU P-N E p n -xp xj +xn

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) USTALANIE SIĘ STANU RÓWNOWAGI W NIESPOLARYZOWANYM ZŁĄCZU P-N Pojawienie się pola elektrycznego powoduje powstanie prądów unoszenia dziur i elektronów, które dotrą do obszaru zubożonego

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) USTALANIE SIĘ STANU RÓWNOWAGI W NIESPOLARYZOWANYM ZŁĄCZU P-N p n unoszeniowy strumień elektronów (nośniki mniejszościowe) unoszeniowy strumień dziur (nośniki mniejszościowe) xj

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) USTALANIE SIĘ STANU RÓWNOWAGI W NIESPOLARYZOWANYM ZŁĄCZU P-N E n p Obszar zubożony +xn xj -xp

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) USTALANIE SIĘ STANU RÓWNOWAGI W NIESPOLARYZOWANYM ZŁĄCZU P-N p n E dyfuzja unoszenie unoszenie dyfuzja Obszar złącza

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) USTALANIE SIĘ STANU RÓWNOWAGI W NIESPOLARYZOWANYM ZŁĄCZU P-N Prądy dyfuzji (nośniki większościowe) Prądy unoszenia (nośniki mniejszościowe)

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) MODEL PASMOWY ZŁĄCZA P-N

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) MODEL PASMOWY ZŁĄCZA P-N n p WF WC WV x W W1 W2 Wi WC Wi WF WV

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) MODEL PASMOWY ZŁĄCZA P-N WF WC WV n p x W W1 W2 W= W1+ W2 Obszar złącza bariera energetyczna Wi

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) NAPIĘCIE DYFUZYJNE-BARIERA POTENCJAŁU W złączu pojawia się bariera energetyczna Napięcie dyfuzyjne (bariera potencjału)

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) NAPIĘCIE DYFUZYJNE-BARIERA POTENCJAŁU

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) NAPIĘCIE DYFUZYJNE-BARIERA POTENCJAŁU

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) NAPIĘCIE DYFUZYJNE-BARIERA POTENCJAŁU

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) NAPIĘCIE DYFUZYJNE-BARIERA POTENCJAŁU

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) NAPIĘCIE DYFUZYJNE-BARIERA POTENCJAŁU

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) NAPIĘCIE DYFUZYJNE-BARIERA POTENCJAŁU Napięcie dyfuzyjne (bariera potencjału) zależy od: Stopnia domieszkowania poszczególnych obszarów złącza Materiału z którego wykonane jest złącze p-n Temperatury

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) NAPIĘCIE DYFUZYJNE-BARIERA POTENCJAŁU Materiał Bariera potencjału [V] German (Ge) 0.3 - 0.4 Krzemogerman (SiGe) 0.4 - 0.5 Krzem (Si) 0.6 - 0.7 Fosforek Indu (InP) 0.9 - 1.0 Arsenek Galu (GaAs) 1.0 - 1.2 Węglik krzemu (SiC) 2.4 - 2.5 Azotek galu (GaN) 3.2 - 3.4 Warstwy diament. (C) 4.7 - 4.9

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) SZEROKOŚĆ OBSZARU ZUBOŻONEGO – SZEROKOŚĆ ZŁĄCZA

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) SZEROKOŚĆ OBSZARU ZUBOŻONEGO – SZEROKOŚĆ ZŁĄCZA p n Obszar złącza xd -xp +xn

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) SZEROKOŚĆ OBSZARU ZUBOŻONEGO – SZEROKOŚĆ ZŁĄCZA

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) SZEROKOŚĆ OBSZARU ZUBOŻONEGO – SZEROKOŚĆ ZŁĄCZA

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) SZEROKOŚĆ OBSZARU ZUBOŻONEGO – SZEROKOŚĆ ZŁĄCZA polaryzacja w kierunku przewodzenia (+U) polaryzacja w kierunku zaporowym (-U)

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) SZEROKOŚĆ ZŁĄCZA – POLARYZACJA W KIERUNKU „PRZEWODZENIA” Wzrost napięcia polaryzującego (+U) powoduje zmniejszanie się szerokości złącza. Jeżeli wartość napięcia polaryzującego jest równa wartości bariery potencjału, wówczas „znika” obszar zubożony, czyli : xd = 0

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) SZEROKOŚĆ ZŁĄCZA – POLARYZACJA W KIERUNKU „PRZEWODZENIA” p n p n xd1 xd0 napięcie polaryzujące napięcie polaryzujące

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) SZEROKOŚĆ ZŁĄCZA – POLARYZACJA W KIERUNKU „PRZEWODZENIA” p n p n xd2=0 xd0 napięcie polaryzujące napięcie polaryzujące

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) Przy napięciu polaryzującym złącze w kierunku przewodzenia, o wartości równej wartości napięcia dyfuzyjnego w złączu, znika obszar zubożony w nośniki (obszar ładunku przestrzennego). Znika zatem również pole elektryczne, przeciwdziałające dyfuzji nośników większościowych

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) SZEROKOŚĆ ZŁĄCZA – POLARYZACJA W KIERUNKU „ZAPOROWYM” p n p n xd3 xd0 napięcie polaryzujące napięcie polaryzujące

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) Przy napięciu polaryzującym złącze w kierunku zaporowym, obszar zubożony w nośniki (obszar ładunku przestrzennego), poszerza się, co powoduje, że pole elektryczne, istniejące w tym obszarze przeciwdziała dyfuzji nośników większościowych

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) SZEROKOŚĆ ZŁĄCZA – ZŁĄCZA „NIESYMETRYCZNE”

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) SZEROKOŚĆ ZŁĄCZA – ZŁĄCZA „NIESYMETRYCZNE” p n+ +xn -xp xj xd NA ND P+ n +xn -xp xj xd NA ND

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) SZEROKOŚĆ ZŁĄCZA – ZŁĄCZA „NIESYMETRYCZNE” N – koncentracja domieszki w „słabiej” domieszkowanej części złącza

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) PRZEPŁYW PRĄDU PRZEZ ZŁĄCZE P-N

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) PRZEPŁYW PRĄDU PRZEZ ZŁĄCZE P-N W p n JnD Jnu WC WC Wi WF WF Wi WV WV Jpu JpD x Obszar złącza

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) PRZEPŁYW PRĄDU PRZEZ ZŁĄCZE P-N W stanie równowagi składowe prądu dyfuzji i unoszenia kompensują się osobno dla dziur i elektronów. Wypadkowy prąd płynący przez złącze będzie wynosił zero

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) POLARYZACJA ZŁĄCZA P-N W KIERUNKU PRZEWODZENIA p n NAPIĘCIE DYFUZYJNE NAPIĘCIE POLARYZUJĄCE „NAPIĘCIA SIĘ ODEJMUJĄ”

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) PRZEPŁYW PRĄDU PRZEZ ZŁĄCZE P-N (BRAK POLARYZACJI) W p n JnD Jnu WC WC Wi WF WF Wi WV WV Jpu JpD x Obszar złącza

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) PRZEPŁYW PRĄDU PRZEZ ZŁĄCZE P-N (PRZEWODZENIE) W p n JnD Jnu WC WC WF Wi Wi WF WV WV Jpu JpD x

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) PRZEPŁYW PRĄDU PRZEZ ZŁĄCZE P-N Przy polaryzacji w kierunku „przewodzenia”: Całkowite napięcie na warstwie zubożonej ulega zmniejszeniu, Maleje działanie pola elektrycznego ograniczającego dyfuzję nośników większościowych: elektronów z obszaru n do p oraz dziur w obszaru p do n, Wzrost napięcia zewnętrznego powinien zatem skutkować wzrostem prądu dyfuzji, przepływającego przez złącze p-n,

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) PRZEPŁYW PRĄDU PRZEZ ZŁĄCZE P-N Ten sposób polaryzacji ułatwia przepływ prądu przez złącze p-n: „przewodzenie”

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) PRZEPŁYW PRĄDU PRZEZ ZŁĄCZE P-N POLARYZOWANE W KIERUNKU PRZEWODZENIA n p DYFUZYJNE PRĄDY NOŚNIKÓW WIEKSZOŚCIOWYCH

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) PRZEPŁYW PRĄDU PRZEZ ZŁĄCZE P-N POLARYZOWANE W KIERUNKU PRZEWODZENIA PRZEWODZENIE Prąd płynący przez złącze p-n spolaryzowane w kierunku przewodzenia jest sumą prądów nośników większościowych płynących z poszczególnych obszarów, Wartość prądu zależy od wartości doprowadzonego napięcia polaryzującego, Nośniki większościowe, po przejściu do obszarów o przeciwnym typie przewodnictwa stają się nośnikami mniejszościowymi

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) CHARAKTERYSTYKA PRĄDOWO-NAPIĘCIOWA 1.0 0.8 0.6 0.4 0.2 2.0 3.0 4.0 5.0 C GaN SiC GaAs InP Si SiGe Ge Napięcie [V] Prąd w kierunku przewodzenia [mA] kierunek przewodzenia

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) CHARAKTERYSTYKA PRĄDOWO-NAPIĘCIOWA 1.0 0.8 0.6 0.4 0.2 Prąd w kierunku przewodzenia [mA] Si Ge niewielki wzrost wartości prądu szybki wzrost wartości prądu punkt „przegięcia” 0.3 0.7 Napięcie [V]

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) POLARYZACJA ZŁĄCZA P-N W KIERUNKU ZAPOROWYM NAPIĘCIE DYFUZYJNE p n NAPIĘCIE POLARYZUJĄCE „NAPIĘCIA SIĘ DODAJĄ”

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) PRZEPŁYW PRĄDU PRZEZ ZŁĄCZE P-N (BRAK POLARYZACJI) W p n JnD Jnu WC WC Wi WF WF Wi WV WV Jpu JpD x Obszar złącza

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) PRZEPŁYW PRĄDU PRZEZ ZŁĄCZE P-N (ZAPOROWY) W p n E WC Jnu Wi WF WC WV WF Wi Jpu WV x

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) PRZEPŁYW PRĄDU PRZEZ ZŁĄCZE P-N Przy polaryzacji w kierunku „zaporowym”: Całkowite napięcie na warstwie zubożonej jest równe sumie napięcia polaryzującego i napięcia dyfuzyjnego, Pole elektryczne w warstwie przeciwdziała dyfuzji nośników: elektronów z obszaru n do p oraz dziur w obszaru p do n. Prądy dyfuzji znikają dla napięć polaryzujących o wartościach na poziomie dzięsiątych części wolta. Prądy unoszenia – czyli prądy nośników mniejszościowych – przepływają przez złącze bez przeszkód

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) PRZEPŁYW PRĄDU PRZEZ ZŁĄCZE P-N Ten sposób polaryzacji utrudnia przepływ prądu przez złącze p-n: „zaporowy”

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) PRZEPŁYW PRĄDU PRZEZ ZŁĄCZE P-N POLARYZOWANE W KIERUNKU ZAPOROWYM p p n n n UNOSZENIOWE PRĄDY NOŚNIKÓW MNIEJSZOŚCIOWYCH E

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) PRZEPŁYW PRĄDU PRZEZ ZŁĄCZE P-N POLARYZOWANE W KIERUNKU ZAPOROWYM ZAPOROWY Prąd płynący przez złącze p-n spolaryzowane w kierunku zaporowym jest sumą prądów nośników mniejszościowych O wartości tego prądu decyduje koncentracja nośników mniejszościowych (dziur w obszarze typu n i elektronów w obszarze typu p) Wartość tego prądu nie zależy od wartości doprowadzonego napięcia polaryzującego, w dużym zakresie zmian tego napięcia

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) CHARAKTERYSTYKA PRĄDOWO-NAPIĘCIOWA niewielki prąd nośników mniejszościowych Wzrost prądu możliwy tylko poprzez zwiększenie koncentracji nośników mniejszościowych w poszczególnych obszarach złącza Napięcie [V] Prąd w kierunku zaporowym

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) CHARAKTERYSTYKA PRĄDOWO-NAPIĘCIOWA UF IF IR UR zaporowy (reverse) przewodzenie (forward)

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) CHARAKTERYSTYKA PRĄDOWO-NAPIĘCIOWA RÓWNANIE SHOCKLEY`A IS – prąd nasycenia, U – napięcie polaryzujące.

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) CHARAKTERYSTYKA PRĄDOWO-NAPIĘCIOWA RÓWNANIE SHOCKLEY`A

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) CHARAKTERYSTYKA PRĄDOWO-NAPIĘCIOWA RÓWNANIE SHOCKLEY`A Dp, Dn – współczynniki dyfuzji dziur i elektronów, Lp, Ln – średnia droga dyfuzji dziur i elektronów, pn0, np0 – koncentracje nośników mniejszościowych.

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) CHARAKTERYSTYKA I-U DIODY RZECZYWISTEJ Równanie Shockley`a zostało wyprowadzone przy wielu założeniach upraszczających Kształt charakterystyki prądowo-napięciowej rzeczywistej diody półprzewodnikowej jest modyfikowany przez wiele czynników

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) CHARAKTERYSTYKA PRĄDOWO-NAPIĘCIOWA IF przewodzenie (forward) GENERACJA UF UR REKOMBINACJA zaporowy (reverse) IR

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) CHARAKTERYSTYKA I-U DIODY RZECZYWISTEJ Wpływ zjawiska rekombinacji i generacji + WC WV x Rekombinacja + WC WV x Generacja

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) CHARAKTERYSTYKA I-U DIODY RZECZYWISTEJ Wpływ zjawiska rekombinacji (przewodzenie) n p + WC WV x Rekombinacja polaryzacja złącza w kierunku przewodzenia

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) CHARAKTERYSTYKA I-U DIODY RZECZYWISTEJ Wpływ zjawiska rekombinacji (przewodzenie) m – współczynnik doskonałości złącza, parametr rekombinacyjny (m=1-2)

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) CHARAKTERYSTYKA I-U DIODY RZECZYWISTEJ Wpływ zjawiska generacji (zaporowy) E n p + WC WV x Generacja Polaryzacja złącza w kierunku zaporowym

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) CHARAKTERYSTYKA I-U DIODY RZECZYWISTEJ Wpływ zjawiska generacji (zaporowy) UR [V] IS IG 10 -13 -11 -9 IR [A] GaAs Si Ge

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) CHARAKTERYSTYKA I-U DIODY Wiele nowych informacji można odczytać z charakterystyki I-U rysowanej w układzie półlogarytmicznym

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) CHARAKTERYSTYKA I-U DIODY 10 -12 -10 -8 -6 -4 -2 0.2 0.4 0.6 0.8 1.0 U[V] I[A] 1 3 5 7 9 nachylenie charakterystyki wykres charakterystyki I-U diody wg równania Shockley`a

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) CHARAKTERYSTYKA I-U DIODY RZECZYWISTEJ -2 10 I[A] Charakterystyka diody „rzeczywistej” -4 10 -6 10 -8 10 -10 10 U[V] -12 10 0.2 0.4 0.6 0.8 1.0

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) DIODA RZECZYWISTA rezystancja szeregowa rS rezystancja upływu rU

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) PRZEBICIE ZŁĄCZA P-N

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) PRZEBICIE ZŁĄCZA P-N Przebicie złącza p-n polega na gwałtownym wzroście prądu o kilka rzędów wartości w niewielkim zakresie zmian napięcia, rzędu kilkuset miliwoltów

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) PRZEBICIE ZŁĄCZA P-N PRZEBICIE TUNELOWE (ZENERA) LAWINOWE

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) PRZEBICIE ZŁĄCZA P-N (TUNELOWE ZENERA) Przebicie tunelowe Zenera polega na tunelowym – bez zmian energii – przejściu elektronów z pasma podstawowego do pasma przewodnictwa Przebicie tunelowe Zenera zachodzi w „cienkich złączach” przy polach elektrycznych na poziomie E=10 [V/m] 8

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) PRZEBICIE ZŁĄCZA P-N (TUNELOWE ZENERA) Pasmo przewodnictwa Pasmo walencyjne WF WV WC W W1 W2 n p x „wąskie” złącze

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) PRZEBICIE ZŁĄCZA P-N (POWIELANIE LAWINOWE) Powielanie lawinowe polega na jonizacji atomów sieci krystalicznej w złączu p-n przez nośniki przyspieszane w polu elektrycznym Powielanie lawinowe zachodzi w „szerokich złączach” przy polach elektrycznych na poziomie E=10 [V/m] 6

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) PRZEBICIE ZŁĄCZA P-N (POWIELANIE LAWINOWE) p n Si „szerokie” złącze

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) CHARAKTERYSTYKA PRĄDOWO-NAPIĘCIOWA UWZGLĘDNIAJĄCA PRZEBICIE UR UBR IR UBR – napięcie przebicia złącza

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) CHARAKTERYSTYKA PRĄDOWO-NAPIĘCIOWA DIODA PROSTOWNICZA Typowy zakres pracy UF UR IF IR UBR UF = 0.7V(Si) UF = 0.3V(Ge)

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) CHARAKTERYSTYKA I-U - WPŁYW TEMPERATURY IF 25°C+ΔT 25°C 1mA UR UBR UF 0.7V 1μA 0.7V-ΔU IR

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) PRZEŁĄCZANIE ZŁĄCZA P-N

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) UF t UR czas przełączania IF t IR

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) PRZEŁĄCZANIE ZŁĄCZA P-N p p n n n

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) PRZEŁĄCZANIE ZŁĄCZA P-N p p n n n Nośniki mniejszościowe

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) PRZEŁĄCZANIE ZŁĄCZA P-N p p n n n Nośniki mniejszościowe E

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) PRZEŁĄCZANIE ZŁĄCZA P-N p p n n n E

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) PRZEŁĄCZANIE ZŁĄCZA P-N trr - całkowity czas przełączania IF t 0.1IR IR 0.9IR tr tf trr

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) SCHEMATY ZASTĘPCZE

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) SCHEMATY ZASTĘPCZE DYNAMICZNY SCHEMAT ZASTĘPCZY NIELINIOWY LINIOWY STATYCZNY QASI-STATYCZNY m.cz. śr.cz. w.cz.

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) SCHEMATY ZASTĘPCZE NIELINIOWE

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) SCHEMAT ZASTĘPCZY – NIELINIOWY STATYCZNY ru rs I(U) rs przewodzenie ru zaporowy

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) SCHEMAT ZASTĘPCZY – NIELINIOWY DYNAMICZNY ru rs CJ Cd rs przewodzenie Cd ru zaporowy CJ

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) POJEMNOŚĆ ZŁĄCZOWA Cj POJEMNOŚĆ DYFUZYJNA Cd

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) POJEMNOŚĆ ZŁĄCZOWA CJ U2 n p Q2 U1 n p Q1 polaryzacja złącza p-n w kierunku zaporowym

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) POJEMNOŚĆ ZŁĄCZOWA CJ U1 n p Q1 U2 n p Q2

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) POJEMNOŚĆ ZŁĄCZOWA CJ Pojemność złączowa Cj odgrywa istotną rolę przy polaryzacji złącza p-n w kierunku zaporowym

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) POJEMNOŚĆ DYFUZYJNA Cd n p C x koncentracja dziur Q2 U2 n p C x koncentracja dziur Q1 U1 polaryzacja złącza p-n w kierunku przewodzenia

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) POJEMNOŚĆ DYFUZYJNA Cd n p C x Q1 U1 n p C x Q2 U2

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) POJEMNOŚĆ DYFUZYJNA Cd Pojemność dyfuzyjna Cd odgrywa istotną rolę przy polaryzacji złącza p-n w kierunku przewodzenia

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) SCHEMATY ZASTĘPCZE LINIOWE

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) SCHEMATY ZASTĘPCZE LINIOWE IF ΔI ΔI UR ΔU ΔU UF ΔU<kT/q=25mV IR

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) DEFINICJA REZYSTANCJI RÓŻNICZKOWEJ

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) REZYSTANCJA RÓŻNICZKOWA ΔI2 ΔU I U ΔI1

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) REZYSTANCJA RÓŻNICZKOWA DEFINICJA KONDUKTANCJI (REZYSTANCJI) RÓŻNICZKOWEJ

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) REZYSTANCJA RÓŻNICZKOWA

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) REZYSTANCJA RÓŻNICZKOWA

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) REZYSTANCJA RÓŻNICZKOWA

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) REZYSTANCJA RÓŻNICZKOWA

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) REZYSTANCJA RÓŻNICZKOWA

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) REZYSTANCJA RÓŻNICZKOWA

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) REZYSTANCJA RÓŻNICZKOWA

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) REZYSTANCJA RÓŻNICZKOWA UF UR IF IR

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) REZYSTANCJA RÓŻNICZKOWA UF UR IF IR

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) SCHEMAT ZASTĘPCZY – NIELINIOWY STATYCZNY ru rs przewodzenie rr rs rr ru zaporowy rr

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) SCHEMAT ZASTĘPCZY – NIELINIOWY DYNAMICZNY ru rs CJ Cd rr rs przewodzenie Cd rr ru zaporowy CJ rr

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) MODEL DIODY – „ODCINKAMI LINIOWY” Kierunek przewodzenia model diody „idealnej” IF A K Kierunek zaporowy UR UF A K IR

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) MODEL DIODY – „ODCINKAMI LINIOWY” Kierunek przewodzenia model diody „praktyczny” IF A K UF - + Kierunek zaporowy UR UF A K IR

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) MODEL DIODY – „ODCINKAMI LINIOWY” Kierunek przewodzenia model diody „złożony” IF A K UF - + rd Kierunek zaporowy rU UF IR A K UR IR

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) DIODA ZENERA ANODA KATODA

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) DIODA ZENERA IF IR UF UR Typowy zakres pracy

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) DIODA ZENERA IF Zz= ΔUz/ΔIz impedancja ΔU UR UF ΔI IR

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) DIODA ZENERA IF IR UF UR ΔI ΔUwy Uwe1 Uwe2 Uwy ΔUwe Uwe prosta obciążenia Prosty układ stabilizacji napięcia Uwe Uwy R

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) MODEL DIODY - DIODA ZENERA IF „idealny” UR UZ UF A - + K UZ IR

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) MODEL DIODY - DIODA ZENERA IF „praktyczny” UR UZ UF + - A K rZ UZ IR

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) DIODA POJEMNOŚCIOWA - VARACTOR

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) DIODA POJEMNOŚCIOWA - VARACTOR n p dielektryk elektroda Spolaryzowana zaporowo dioda pojemnościowa – zmienna pojemność C1 d1

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) DIODA POJEMNOŚCIOWA - VARACTOR n p dielektryk elektroda Spolaryzowana zaporowo dioda pojemnościowa – zmienna pojemność d2 C2<C1

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) DIODA POJEMNOŚCIOWA -VARACTOR C [pF] 40 n p d 30 pojemność diody 20 10 U [V] 10 100 polaryzacja złącza w kierunku zaporowym

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) DIODA TUNELOWA ESAKIEGO

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) ZŁĄCZE SILNIE DOMIESZKOWANE WF W p+ Wc Wv x W Wc WF Wv p+ n+ x n+ x WF Wc Wv W

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) DIODA TUNELOWA ESAKIEGO IR IF UR UF U1 U2 I1 I2 typowy zakres pracy -rr

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) DIODA TUNELOWA ESAKIEGO IR IF UR UF charakterystyka I-U diody tunelowej charakterystyka I-U diody tunelowej tunelowy prąd „Zenera” tunelowy prąd „Esakiego” Prąd „dyfuzyjny”

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) DIODA TUNELOWA ESAKIEGO x W Wc WF Wv p+ n+ 1 qUR tunelowy prąd Zenera IR IF UR UF 1

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) DIODA TUNELOWA ESAKIEGO x W Wc WF Wv p+ n+ 2 tunelowy prąd Esakiego (niewielki) IR IF UR UF 2

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) DIODA TUNELOWA ESAKIEGO x W Wc WF Wv p+ n+ 3 tunelowy prąd Esakiego (maksymalny) IR IF UR UF 3

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) DIODA TUNELOWA ESAKIEGO W Wc WF Wv p+ n+ 4 tunelowy prąd Esakiego (niewielki) IR IF UR UF 4 x

Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) DIODA TUNELOWA ESAKIEGO x W p+ n+ 5 prąd dyfuzyjny IR IF UR UF 5 Wc Wv WF