Tranzystory Tranzystory bipolarne Tranzystory unipolarne bipolarny Temat i plan wykładu Tranzystory Tranzystory bipolarne Tranzystory unipolarne bipolarny unipolarne ELEKTRONIKIA – Jakub Dawidziuk piątek, 24 marca 2017 1
Tranzystor Trójkońcówkowy (czterokońcówkowy) półprzewodnikowy element elektroniczny, posiadający zdolność wzmacniania sygnału elektrycznego. Nazwa tranzystor pochodzi z angielskiego zwrotu "transfer resistor", który oznacza element transformujący rezystancję.
BIPOLARNE (BJT – Bipolar Junction Transistor) Rodzaje tranzystorów - bipolarne i unipolarne (ang. TRANSISTOR = TRANSfer resISTORs) BIPOLARNE (BJT – Bipolar Junction Transistor) STEROWANE PRĄDOWO, czyli aby IC ≠ 0 musi IB ≠ 0 prąd wyjściowy jest funkcją prądu wejściowego UNIPOLARNE (FET – Field Effect Transistor) STEROWANE POLEM ELEKTRYCZNYM występującym pomiędzy bramką i źródłem, czyli napięciem UGS wytwarzającym to pole, ale IG ≈ 0 prąd wyjściowy jest funkcją napięcia wejściowego
Tranzystory (ang. TRANSISTOR = TRANSfer resISTORs) Podział
Tranzystory - zastosowania Tranzystor ze względu na swoje właściwości wzmacniające znajduje bardzo szerokie zastosowanie. Wykorzystywany jest do budowy różnego rodzaju wzmacniaczy : różnicowych, operacyjnych, mocy (akustycznych), selektywnych, pasmowych. Jest podstawowym elementem w konstrukcji wielu układów elektronicznych, takich jak źródła prądowe, lustra prądowe, stabilizatory, przesuwniki napięcia, przełączniki, przerzutniki oraz generatory. Ponieważ tranzystor może pełnić rolę przełącznika, z tranzystorów buduje się także bramki logiczne realizujące podstawowe funkcje boolowskie, co stało się motorem do bardzo dynamicznego rozwoju techniki cyfrowej w ostatnich kilkudziesięciu latach. Tranzystory są stosowane do konstrukcji wszelkiego rodzaju pamięci półprzewodnikowych
Symbol graficzny tranzystora bipolarnego npn
Symbol graficzny tranzystora bipolarnego pnp
Zastosowania tranzystorów
Łącznik tranzystorowy (npn)
Tranzystor bipolarny (BJT) npn – układy połączeń
Stany pracy tranzystora Rozróżnia się cztery stany pracy tranzystora bipolarnego: stan zatkania (odcięcia): złącza BE i CB spolaryzowane są w kierunku zaporowym, stan nasycenia: złącza BE i CB spolaryzowane są w kierunku przewodzenia, stan aktywny: złącze BE spolaryzowane w kierunku przewodzenia, zaś złącze CB zaporowo, stan aktywny inwersyjny (krócej: inwersyjny): BE zaporowo, CB w kierunku przewodzenia (odwrotnie niż stanie aktywnym). Stan aktywny tranzystora jest podstawowym stanem pracy wykorzystywanym we wzmacniaczach; w tym zakresie pracy tranzystor charakteryzuje się dużym wzmocnieniem prądowym (kilkadziesiąt-kilkaset). Stany nasycenia i zaporowy stosowane są w technice impulsowej, jak również w układach cyfrowych. Stan aktywny inwersyjny nie jest powszechnie stosowanych, ponieważ ze względów konstrukcyjnych tranzystor charakteryzuje się wówczas gorszymi parametrami niż w stanie aktywnym (normalnym), m.in. mniejszym wzmocnieniem prądowym.
Obszary pracy tranzystora npn
Tranzystor pracujący w układzie wzmacniacza Tranzystor pracujący w układzie wzmacniacza. Złącze kolektor-baza jest spolaryzowane zaporowo (bateria EC), natomiast złącze baza-emiter w kierunku przewodzenia (bateria EB) Rozpływ prądu w tranzystorze npn. Ponieważ złącze baza-emiter jest spolaryzowane w kierunku przewodzenia to istnieje przepływ dziur z obszaru p do obszaru n oraz przepływ elektronów z obszaru n do obszaru p. Elektrony wprowadzane z emitera do bazy stają się tam nośnikami mniejszościowymi i drogą dyfuzji oddalają się od złącza emiterowego. Część tych elektronów łączy się z dziurami, których w bazie jest dużo (obszar p). Wszystkie elektrony, które dotrą w pobliże złącza kolektor-baza są unoszone do obszaru kolektora. Dla niedużej szerokości obszaru p (bazy) praktycznie wszystkie elektrony wstrzykiwane przez emiter do bazy dotrą do kolektora. Bardzo ważnym jest aby strata elektronów w bazie była jak najmniejsza.
Charakterystyki tranzystora Prąd kolektora IC jest funkcją napięcia baza-emiter UBE. Charakterystyka ta ma charakter wykładniczy. Dla tranzystora współczynnik korekcyjny m jest praktycznie równy jeden i wzór opisujący charakterystykę przejściową można z dobrym przybliżeniem przedstawić jako: Charakterystyka wyjściowa tranzystora, która przedstawia zależność prądu kolektora IC od napięcia kolektor-emiter UCE przy doprowadzonym napięciu wejściowym baza-emiter UBE. Zauważmy, że: powyżej pewnego napięcia prąd kolektora prawie nie zależy od napięcia UCE, do wywołania dużej zmiany prądu kolektora IC wystarczy mała zmiana napięcia baza-emiter UBE. Punkt, w którym następuje zagięcie charakterystyki wyjściowej nazywany jest napięciem nasycenia kolektor-emiter UCEsat.
Charakterystyki U-I tranzystora npn w konfiguracji OE UCEsat - parametr katalogowy, podawany przy określonej wartości IC oraz IB. UCEsat = 0,2 ÷2V Tranzystory małej mocy
Charakterystyki wyjściowe tranzystora npn (przykłady OB i OE)
Tranzystor bipolarny w konfiguracji OE – obszary pracy
BC 107
BC 239
Parametry tranzystora BC 211
Charakterystyka wyjściowa tranzystora BC 211
pnp npn IC=hFE· IB=b·IB Aby tranzystor znajdował się w stanie normalnej pracy to muszą być spełnione następujące warunki: dla tranzystora npn potencjał kolektora musi być wyższy od potencjału emitera, dla tranzystora pnp potencjał kolektora musi być niższy od potencjału emitera, „dioda” baza-emiter musi być spolaryzowana w kierunku przewodzenia, a „dioda” kolektor-baza w kierunku zaporowym, nie mogą zostać przekroczone maksymalne wartości IC, IB, UCE, moc wydzielana na kolektorze IC· UCE, temperatura pracy czy też napięcie UBE. pnp npn Jeżeli tranzystor jest w stanie normalnej pracy czyli spełnia powyższe warunki to z dobrym przybliżeniem prawdziwą jest zależność, którą warto zapamiętać: IC=hFE· IB=b·IB gdzie hFE jest współczynnikiem wzmocnienia prądowego nazywanego również betą. Współczynnik ten może przyjmować wartości od 50 do 300A/A dla tego samego typu tranzystora, a więc nie jest dobrym parametrem na którym można opierać parametry projektowanego układu.