WĘDRÓWKI PO GRAFACH Obchody Eulera Cykle Hamiltona.

Slides:



Advertisements
Podobne prezentacje
Sympleksy n=2.
Advertisements

Typy strukturalne Typ tablicowy.
Teoria Grafów.
DOMINOWANIE W GRAFACH Magdalena Lemańska.
Grafy spełniające nierówność Γ(G) < IR(G)
Grafy o średnicy 2 i dowolnej liczbie dominowania
ALGORYTMY GRAFOWE.
Grafy inaczej, czyli inne modele grafów
Homologia, Rozdział I „Przegląd” Homologia, Rozdział 1.
WYKŁAD 6. Kolorowanie krawędzi
ELEMENTY TEORII GRAFÓW
Wykład 6 Najkrótsza ścieżka w grafie z jednym źródłem
Minimalne drzewa rozpinające
Algorytm Dijkstry (przykład)
Temat: WIELOŚCIANY KLASA III P r.
ALGORYTMY I STRUKTURY DANYCH
Twierdzenie Thevenina-Nortona
Ciągi de Bruijna generowanie, własności
-skeletony w przestrzeniach R 2 i R 3 Mirosław Kowaluk Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski.
Zliczanie III.
WYKŁAD 5. Skojarzenia – ciąg dalszy
WYKŁAD 2. Kolorowanie wierzchołków
WYKŁAD 7. Spójność i rozpięte drzewa
WYKŁAD 1. Grafy są wokół nas. Pojęcia wstępne.
WYKŁAD 4. Skojarzenia Skojarzenie w grafie G to niezależny zbiór krawędzi (rozłączne, bez wspólnych konców). Skojarzenie M w G traktujemy jak podgraf.
WYKŁAD 8. Siła spójności Wierzchołek v nazywamy wierzchołkiem cięcia grafu G, gdy podgraf G-v ma więcej składowych spójności niż G. Krawędź e nazywamy.
WĘDRÓWKI PO GRAFACH Obchody Eulera Cykle Hamiltona.
WYKŁAD 8. Siła spójności A,B – dowolne podzbiory V(G)
KOLOROWANIE MAP.
WYKŁAD 3. Kliki i zbiory niezależne
GRAFY PLANARNE To grafy, które można narysować na płaszczyźnie tak, by krawędzie nie przecinały się (poza swoimi końcami). Na przykład K_4, ale nie K_5.
WYKŁAD 5. Skojarzenia – ciąg dalszy
WYKŁAD 4. Skojarzenia Skojarzenie w grafie G to niezależny zbiór krawędzi (rozłączne, bez wspólnych konców). Skojarzenie M w G traktujemy jak podgraf G.
Dariusz Odejewski Krzysztof Wójcik
Dodawanie i odejmowanie wektorów
Materiały pomocnicze do wykładu
12 grudnia 2001Matematyka Dyskretna, Elementy Kombinatoryki G.Mirkowska, PJWSTK 1 Wykład 11 Elementy Kombinatoryki.
Macierz incydencji Macierzą incydencji grafu skierowanego D = (V, A), gdzie V = {1, ..., n} oraz A = {a1, ..., am}, nazywamy macierz I(D) = [aij]i=1,...,n,
WYKŁAD 7. Spójność i rozpięte drzewa Graf jest spójny, gdy dla każdego podziału V na dwa rozłączne podzbiory A i B istnieje krawędź z A do B. Definicja.
Przepływy w sieciach. Twierdzenie minimaksowe.
Dodatkowe własności funkcji B-sklejanych zawężenie f do K Rozważmy funkcjeIch zawężenia do dowolnego przedziałutworzą układ wielomianów. Dla i=k ten układ.
Liczby Ramseya Klaudia Sandach.
SKIEROWANE Marek Bil Krzysztof Fitrzyk Krzysztof Godek.
Graf - jest to zbiór wierzchołków, który na rysunku przedstawiamy za pomocą kropek oraz krawędzi łączących wierzchołki. Czasami dopuszcza się krawędzie.
Algorytmy i struktury danych
Badania operacyjne Wykład 5.
Reprezentacja grafów i operacje na grafach na przykładzie algorytmu Dijkstry i algorytmu na odnajdywanie Silnych Spójnych Składowych Temat Opracowali:
Uniwersytet Dzieci Nieważne jaki masz komputer
Geometria obliczeniowa Wykład 7
Języki i automaty część 3.
PODSTAWOWE WŁASNOŚCI PRZESTRZENI
Algorytmy i Struktury Danych
Geometria obliczeniowa Wykład 13 Planowanie ruchu 1.Znajdywanie ścieżki między dwoma punktami. 2.Ruch postępowy robota wielokątnego na płasz- czyźnie.
PLANARNOŚĆ i KOLOROWANIE MAP. Problem Jaka jest minimalna liczba kolorów, za pomocą których można pokolorować obszary województw na mapie Polski tak,
Algorytmy i Struktury Danych Grafy
Drogi i cykle Eulera w grafach nieskierowanych
Algorytmy grafowe Minimalne drzewa rozpinające
Szachy a grafy. Powiązanie szachownicy z grafem Szachownicę można przedstawić jako graf. Wierzchołek odpowiada polu, a krawędzie ruchowi danej figury.
GRA CHOMP. Czym jest chomp? Jest to gra dla dwóch osób, rozgrywana na prostokątnej tablicy, zwanej „tabliczką czekolady”
WYKŁAD 5. Skojarzenia – ciąg dalszy Skojarzenie w grafie G to niezależny zbiór krawędzi (rozłączne, bez wspólnych końców). α’(G) – moc największego skojarzenia.
Grafy.
Zarządzanie projektami
Modelowanie matematyczne – złożoność obliczeniowa, teoria a praktyka
Pojęcia podstawowe c.d. Rachunek podziałów Elementy teorii grafów
Zagadnienia transportowe Katedra Ekonomiki i Funkcjonowania Przedsiębiorstw Transportowych.
Działania na grafach Autor: Anna Targońska.
ZNAJDOWANIE NAJKRÓTSZYCH DRÓG oraz NAJNIŻSZYCH i NAJKRÓTSZYCH DRZEW WSTĘP DO OBLICZEŃ NA GRAFACH
Algorytmy i struktury danych
Obwody elektryczne wykład z 14.12
ALGORYTMY I STRUKTURY DANYCH
Zapis prezentacji:

WĘDRÓWKI PO GRAFACH Obchody Eulera Cykle Hamiltona

U źródeł teorii grafów 1736: Euler odwiedza Królewiec (Königsberg, Kaliningrad). Rozwiązuje zagadkę 7 mostów. Uogólnia problem i też go rozwiązuje, otrzymując 1. twierdzenie teorii grafów.

Mosty Królewieckie A B C D A C B D

Spacery i obchody Dla danego multigrafu G, ciąg W=v_0e_0v_1e_1...v_{k-1}e_{k-1}v_k nazywamy spacerem, gdy e_i=v_iv_{i+1} jest krawędzią w G dla każdego i<k. W (Na ?) spacerze wierzchołki i krawędzie mogą się powtarzać. Spacer jest zamknięty, gdy v_0=v_k. Zamknięty spacer zawierający każdą krawędź dokładnie raz (dokładniej: tyle razy, ile wynosi jej krotność) nazywamy obchodem Eulera, a spójny multigraf, dla którego istnieje obchód Eulera – grafem Eulera.

Ilustracja a b c d e f a-b-c-f-b-a-e -- spacer a-b-c-b-f-a – spacer zamknięty a b cd a-b-d-c-b-c-a – obchód Eulera

Tw. Eulera Tw (Euler, 1736). Spójny graf G jest grafem Eulera wgdy wszystkie stopnie wierzchołków są parzyste. Dowód :  oczywiste  Rozważmy najdłuższy spacer W w G zawierający każdą krawędź nie więcej niż raz. W musi być zamknięty (dlaczego?). Jeśli W nie jest obchodem Eulera, to istnieje krawędź e poza W, ale incydentna z W. Wtedy jednak W można wydłużyć – sprzeczność. 

Wniosek Lemat. Jeśli wszystkie stopnie wierzchołków w G są parzyste, to krawędzie w G można zorientować (skierować,,,ostrzałkować”) tak, by do każdego wierzchołka wchodziło tyle samo strzałek co wychodziło. Dowód: W każdej składowej znajdźmy obchód Eulera i zorientujmy krawędzie wzdłuż niego.  Uwaga: Adaptacja pierwotnego dowodu tego lematu pozwala na indukcyjny dowód Tw. Eulera.

Zwiedzamy muzeum Zwiedzamy muzeum będące labiryntem korytarzy, w którym obrazy wiszą po obu stronach. Cel: przejść każdy korytarz 2 razy i wrócić do wyjścia.

PLAN MUZEUM a b c d e a b c d e Konkluzja: KAŻDE muzeum da się tak przejść!

Rysowanie bez odrywania Czy dany rysunek można narysować bez odrywania ołówka od papieru i bez powtarzania linii?

Trasa Eulera Spacer zawierający każdą krawędź dokładnie raz nazywamy trasą Eulera. Wniosek. Spójny graf G ma trasę Eulera wgdy wszystkie stopnie wierzchołków są parzyste, oprócz co najwyżej dwóch. Dowód:  Jeśli trzeba, dodajmy krawędź, by powstał graf Eulera. Z obchodu Eulera usuńmy dodaną krawędź. 

Więcej nieparzystych Wniosek. Jeśli multigraf G ma 2k nieparzystych stopni wierzchołków, to E(G) można pokryć przy pomocy k (krawędziowo rozłącznych) spacerów, w których żadna krawędź się nie powtarza. Dowód: Dodajmy do G k krawędzi łączących parami wierzchołki nieparzyste. Nowy multigraf jest grafem Eulera i ma obchód Eulera W. Usuwając z W dodane krawędzie, dzielimy go na k spacerów o żądanej własności. 

Problem Chińskiego Listonosza Obchodem listonosza nazywamy zamknięty spacer przechodzący przez każdą krawędź co najmniej raz. Problem (Guan 1960, Edmonds 1965): Znaleźć najkrótszy obchód listonosza w spójnym multigrafie.

Rozwiązanie Niech G ma 2k nieparzystych stopni. Niech H będzie najmniejszym (co do liczby krawędzi) podgrafem rozpiętym w G, który ma te same nieparzyste wierzchołki co G. Problem 1: Jak efektywnie wyznaczyć H ? (ćwiczenia)

Rozwiązanie – c.d. Dublując krawędzie H w G otrzymamy graf Eulera G+H. Obchód Eulera W w G+H wyznacza obchód listonosza w G. Problem 2: Wykazać, że W jest najkrótszym obchodem listonosza w G? (ćwiczenia)

A B C D E F G H I J

A B C D E F G H I J

Ilustracja

Zabawka Hamiltona Sir William Hamilton (1859): Przejść bez powtórzeń wszystkie wierzchołki dwunastościanu i wrócić do punktu wyjścia, poruszając się wzdłuż krawędzi.

Cykl Hamiltona Cyklem Hamiltona w grafie G nazywamy rozpięty podgraf grafu G, który jest cyklem. Graf posiadający cykl Hamiltona nazywamy hamiltonowskim lub Hamiltona. Ścieżką Hamiltona w grafie G nazywamy rozpięty podgraf grafu G, który jest ścieżką.

Euler vs. Hamilton Obchód (trasa) Eulera w grafie G jest cyklem (ścieżką) Hamiltona w grafie krawędziowym L(G)

Ale... Nie każdy graf jest grafem krawędziowym, np. K_{1,3}. Problem rozstrzygnięcia czy graf jest hamiltonowski jest NP-zupełny. Problemy rozstrzygnięcia czy graf jest eulerowski oraz czy graf jest grafem krawędziowym są w klasie P.

Warunek konieczny Fakt 1. Jeśli istnieje w G zbiór wierzchołków S taki, że G-S ma więcej niż |S| składowych spójności, to G nie jest hamiltonowski. Dowód: Jeśli usunąć z cyklu k wierzchołków, to rozpadnie się on na co najwyżej k składowych, więc to samo jest prawdą dla grafu hamiltonowskiego.

Wnioski 1. Graf Hamiltona musi być 2-spójny. 2. Dwudzielny graf Hamiltona musi mieć równy dwupodział, a więc musi mieć parzysta liczbę wierzchołków. NIE!!!

Inny warunek konieczny Fakt 2. Jeśli G jest hamiltonowski, to podgraf złożony z krawędzi incydentnych z wierzchołkami stopnia dwa w G musi być sumą ścieżek lub cyklem Hamiltona. NIE!!!

Tw. Diraca Jak duże δ(G) gwarantuje cykl Hamiltona? Tw.(Dirac 1952). Jeśli |V(G)|=n>2 i δ(G) ≥ n/2, to G jest hamiltonowski. Dowód: Przy powyższych założeniach G jest spójny. Rozważmy najdłuższą ścieżkę P w G. Jej końce, u i v, mają wszystkich sąsiadów w zbiorze V(P).

Dowód Tw. Diraca – c.d. Niech R będzie zbiorem wierzchołków położonych na P bezpośrednio,,na prawo” od sąsiadów v. Precyzyjniej: u v w’w

Dowód Tw. Diraca – dokończenie Zatem w G istnieje cykl C taki, że V(C)=V(P). Jeśli C nie jest cyklem Hamiltona, to na podstawie spójności grafu G, musi istnieć krawędź o dokładnie jednym końcu w V(C). To jednak oznacza, że w G jest ścieżka dłuższa niż P – sprzeczność. C

Tw. Ore Tw.(Ore 1960). Jeśli |V(G)|=n>2 i dla każdej pary niesąsiednich wierzchołków u i v, to G jest hamiltonowski. Dowód: Taki sam jak dowód Tw. Diraca.