Analiza instrumentalna drewna Andrzej Radomski Paweł Kozakiewicz Tomasz Zielenkiewicz
budowa pozajądrowa atomu Rutherford - model planetarny: Dodatnio naładowane jądro, wokół którego krążą elektrony. Bohr - dodał do modelu Rutherforda teorię kwantów Plancka i Einsteina: Elektrony mogą mieć tylko wybrane wartości energii i zajmować tylko wybrane orbity. Heisenberg, Schrödinger, Dirac - mechanika kwantowa na bazie dualizmu korpuskularno-falowego de Broglie’a: Elektronów w atomach nie należy traktować jako cząstek, lecz jako chmurę ładunków o gęstości opisanej przez kwadrat funkcji falowej 2. Wg Heisenberga 2 określa prawdopodobieństwo przebywania elektronu w określonym obszarze przestrzeni.
równanie Schrödingera - amplituda fali de Broglie’a Rozwiązaniem jest funkcja falowa. Musi mieć sens fizyczny: |(x,y,z)|2dv = 1 liczby kwantowe: główna, n energia elektronu poboczna, l moment pędu elektronu magnetyczna, m ustawienie wektora momentu pędu względem pola magnetycznego
liczby kwantowe główna liczba kwantowa n = 1, 2, 3, ... poboczna liczba kwantowa l = 0, 1, ..., (n – 1) magnetyczna liczba kwantowa m = (–l, ..., –1, 0, 1, ..., l) powłoki K, L, M, N, O, P, Q, ... podpowłoki s, p, d, f, g, ... Określają jednoznacznie kształt orbitalu elektronowego - obszaru przestrzeni o określonym prawdopodobieństwie przebywania elektronu. spinowa liczba kwantowa s = +1/2 magnetyczna spinowa liczba kwantowa ms = –1/2, +1/2
orbitale atomowe n = 1 l = 0 m = 0 (1s) n = 2 l = 0 m = 0 (2s) n = 2 l = 1 m = 0, ±1 (2p) n = 3 l = 0 m = 0 (3s) n = 3 l = 1 m = 0, ±1 (3p) n = 3 l = 2 m = 0, ±1, ±2 (3d)
orbitale atomowe n = 4 l = 0 m = 0 (4s) n = 4 l = 1 m = 0, ±1 (4p) n = 4 l = 2 m = 0, ±1, ±2 (4d) n = 4 l = 3 m = 0, ±1, ±2, ±3 (4f)
poziomy energetyczne W atomach wieloelektronowych oddziaływania się komplikują, energia orbitalu zależy od wartości pobocznej liczby kwantowej. 6d 5f 7s 6p 5d 4f 6s 5p 4d 5s 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 5g 6s 6p 6d 6f ... 7s 7p ... ... 4p 3d 4s energia 3p 3s 2p 2s 1s
WIDMO FAL ELEKTROMAGNETCZNYCH
Barwa Barwa Długość fali [nm] Barwa dopełniająca Czerwona 600-700 Zielononiebieska Pomarańczowa 600-630 Niebieska Żółtopomarańczowa 580-600 Błękit cyjanowy Żółta 560-580 Błękit indygo Żółtozielona 560 Fioletowa Zielona 490-560 Purpurowa 490 480-490 470-480 400-470 400-440
Koło barw
układ okresowy - bloki pierwiastki bloku s pierwiastki bloku p H Li Na K Rb Cs Fr Be Mg Ca Sr Ba Ra La Ac Ce Th ... Yb No Pr Pa Sc Y Lu Lr Nd U Ti Zr Hf Rf Pm Np V Nb Ta Db Sm Pu Cr Mo W Sg Eu Am Mn Tc Re Bh Gd Cm Fe Ru Os Hs Tb Bk Co Rh Ir Mt Dy Cf Ni Pd Pt Ho Es Cu Ag Au Er Fm Zn Cd Hg Tm Md B Al Ga In Tl C Si Ge Sn Pb N P As Sb Bi O S Se Te Po F Cl Br I At He Ne Ar Kr Xe Rn konfiguracja helowców: He 1s2 Ne 1s22s2p6 Ar 1s22s2p63s2p6 Kr 1s22s2p63s2p6d104s2p6 Xe 1s22s2p63s2p6d104s2p6d105s2p6 Rn 1s22s2p63s2p6d104s2p6d10f145s2p6d106s2p6 pierwiastki bloku s pierwiastki bloku p pierwiastki bloku d pierwiastki bloku f
Absorpcja światła na przykładzie chlorofilu a i b
Barwniki nitrowe i nitrozowe Kwas pikrynowy żółcień Martiusa Trwała zieleń
barwniki azowe czerwień Kongo Tartrazyna (żółta) oranż metylowy
Barwniki trifenylometanowe Zieleń malachitowa Fenoloftaleina
Barwniki antrachinowe Alizaryna Barwniki tiazynowe Błękit metylenowy
Indygoidy Indygo Indygotyna
Antocyjaniny (rodzaje)
Spektrofotometr
Promieniowanie podczerwone jest częścią widma promieniowania elektromagnetycznego. To forma energii, którą odbieramy jako ciepło. Zostało odkryte w 1800 r.
Podział spektrum Funkcjonuje kilka podziałów podczerwieni na pasma, używanym w Polsce jest: - bliska podczerwień (ang. near infrared, NIR), 0,7-5 μm) - średnia podczerwień (ang. mid infrared, MIR), 5-30 μm) - daleka podczerwień (ang. far infrared, FIR), 30-1000 μm) Zdjęcie w świetle widzialnym Zdjęcie w bliskiej podczerwieni
Drgania wiązań w cząsteczce: drgania rozciągające n symetryczne asymetryczne deformacyjne d, w, g, t, r Poza płaszczyzną W płaszczyźnie nożycowe wachlarzowe skręcające wahadłowe
Rodzaje drgań w zakresie średniej podczerwieni
KBr używa się często jako tła, gdyż absorbuje poza zakresem średniej podczerwieni.
Wykonanie doświadczenia Próbka w stanie stałym, ciekłym, gazowym lub w rozpuszczalniku. Umieszcza się ja w pojemniku z chlorku sodu (najczęściej stosowany materiał - przepuszcza promieniowanie IR). Wiązkę promieniowania przepuszcza się przez pojemnik z badanym materiałem. Rejestrator zapisuje widmo transmisyjne w postaci pasm i pików. Analiza widma odbywa się przy pomocy tablic.
Spektrometr FT-IR Magna-IR 550 Narzędzia Spektrometr FT-IR Magna-IR 550 Zakresie rejestracji widma 4000 - 400 cm-1
Region odcisku palca i grup funkcyjnych:
ALKANY
alkany
cykloalkany
cykloalkany norbornan
chlorowcoalkany lindan
chlorowcoalkany
ALKENY
alkeny
alkeny
alkeny
ALKINY C ≡ C–rozciągające w zakresie 2260-2100 cm-1 C≡ C–H: C–H rozciągające w zakresie 3330-3270 cm-1 R–C≡C–H: C–H zginające w zakresie 700-610 cm-1
alkiny
alkiny
alkiny
ARENY
areny
areny styren
areny
ALKOHOLE
alkohole ciekły
alkohole gazowy
alkohole rozcieńczony roztwór
fenole
ETERY
ALDEHYDY
KETONY
aldehydy
aldehydy
ketony
ketony
ketony
KWASY KARBOKSYLOWE
ESTRY
estry
estry
aminy
aminy
amidy
amidy
amidy
Analiza widma IR Krok pierwszy w obszarze 1820-1660 cm-1 poszukujemy pasma karbonylowego. Jest to zazwyczaj najbardziej intensywne pasmo w widmie. Jeżeli takie pasmo zostało znalezione poszukujemy innych pasm związanych z grupami funkcyjnymi zawierającymi wiązanie C=O Krok drugi - jeżeli stwierdziliśmy obecność grupy karbonylowej wówczas określamy czy jest ona składnikiem kwasu, estru, aldehydu bądź ketonu
Analiza widma IR Krok czwarty Krok piąty Krok trzeci jeżeli w widmie nieobecne jest pasmo karbonylowe wówczas poszukujemy pasma O-H alkoholu w obszarze 3300-2600 cm-1 oraz pasma C-O w obszarze 1300-1100 cm-1 Krok czwarty - jeżeli C=O i O-H są nieobecne, poszukujemy wiązań wielokrotnych C-H powyżej 3000 cm-1 C=C 1650-1450 cm-1 Krok piąty - brak grup funkcyjnych świadczy o obecności alkanu lub halogenopochodnej