Podstawy krystalografii Michał Sobczak
Sieć + Baza = Struktura krystaliczna Sieć – regularny układ punktów zdefiniowany przez podstawowe wektory translacji sieci. Abstrakcja matematyczna. Baza atomowa – atomy lub cząsteczki przypisane do węzłów sieci.
Wektory translacji sieci Podstawowe wektory translacji definiują sieć w taki sposób, że ułożenie atomów wygląda tak samo z punku jak i z punktu . Gdzie są dowolnymi liczbami całkowitymi. jest wektorem translacji sieci. Mówimy, że kryształ jest niezmienniczy ze względu na translację.
Komórka elementarna Najmniejszy obszar sieci przestrzennej wyodrębniony przez sześć płaszczyzn parami równoległych, mający kształt równoległościanu. Równoległościan zdefiniowany jest przez podstawowe wektory translacji.
Komórka elementarna Komórka Wignera-Seitza – schemat wyodrębniania komórki elementarnej. Łączymy liniami węzeł ze wszystkimi sąsiadami Pośrodku lini prowadzimy proste prostopadłe.
Sieci Bravais Złożenie 7 systemów krystalograficznych oraz 4 sposobów centrowania teoretycznie daje 28 sieci Bravais, w rzeczywistości występuje 14. Układ Centrowań Krawędzie i kąty Trójskośny 1 a b c, a b g 90º Jednoskośny 2 a b c, a = g = 90º b Rombowy 4 a b c, a = b = g = 90º Tetragonalny a = b c, a = b = g = 90º Regularny 3 a = b = c, a = b = g = 90º Romboedryczny (trygonalny) a = b c, a = b = 90º, g = 120º a = b = c, a = b = g 90º Heksagonalny
Sieci Bravais 2D Ukośnokątna a1a2, 90º Kwadratowa a1=a2, =90º Prostokątna a1a2, =90º Sześciokątna a1=a2, =120º Prostokątna centrowana a1 a2, 90º
Komórka umowna Minimalny obszar mający pełną symetrię sieci, którym można wypełnić przestrzeń dokonując translacji. prosta przestrzennie ściennie (prymitywna) centrowana centrowana
Kierunki sieciowe Kierunki obliczamy tak jak współrzędne wektora i sprowadzamy je do liczb całkowitych
Płaszczyzny sieciowe Płaszczyzna sieciowa – płaszczyzna na której leżą co najmniej 3 węzły sieci nie leżące na jednej prostej. W związku z tym płaszczyzn w krysztale jest nieskończenie wiele. Płaszczyzny równoległe tworzą rodzinę identycznych płaszczyzn sieciowych.
Wskaźniki Millera Płaszczyzna lub rodzina płaszczyzn jest określona przez 3 liczby całkowite hkl zwane wskaźnikami Millera. Sieć ma stałe a, b, c, płaszczyzna przecina osie w odległościach 3a, 2b, 2c to wskaźniki Millera wynoszą (2,3,3) – odwrotności odległości pomnożone przez najmniejszy wspólny mianownik.
Sieć odwrotna Jeżeli , są podstawowymi wektorami sieci krystalicznej, to podstawowe wektory sieci odwrotnej ,są zdefiniowane:
Sieć odwrotna 2D Jeżeli , są podstawowymi wektorami sieci dwuwymiarowej, to podstawowe wektory sieci odwrotnej ,są zdefiniowane: Gdzie, jest jednostkowym wektorem prostopadłym do powierzchni.
Strefa Brillouina W sieci odwrotnej podobnie jak w sieci prostej, definiuje się komórkę elementarną. Komórkę elementarną sieci odwrotnej nazywamy pierwsza strefą Brillouina. Konstrukcja pierwszej strefy jest identyczna z konstrukcją komórki Wignera-Seitza sieci prostej.
Kolejne strefy Brillouina II III sc fcc bcc
Rozkład sąsiadów Rozkład sąsiadów dla sieci sc
Rozkład sąsiadów Rozkład sąsiadów dla sieci bcc
Rozkład sąsiadów Rozkład sąsiadów dla sieci fcc
Definicja sumy strukturalnej Suma strukturalna jest to suma po odpowiednich sąsiadach leżących w danej płaszczyźnie sieciowej, określona jest wzorem: gdzie: - wektor falowy równoległy do płaszczyzny o określonej orientacji powierzchniowej, - wektor położenia rzutu odpowiedniego sąsiada leżącego w płaszczyźnie l’=l+n wybranego węzła z płaszczyzny l, indeks górny N dotyczy drugich sąsiadów.
Koniec Dziękuję za uwagę.