Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 System ciągły; model przestrzeni stanu (zmiennych stanu) – odpowiedzi – c.d. Poszukujemy rozwiązań x – stany u – wejścia y - wyjścia Weźmy równanie stanu: Rozwiązanie: Składowa swobodna Składowa wymuszona
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 2 Składowa swobodna – rozwiązanie równania jednorodnego Rozwiązanie równania jednorodnego proponujemy w postaci: gdzie Sprawdzenie
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 3 Rozwiązanie ogólne – rozwiązanie równania jednorodnego, zatem: gdzie Przejdziemy do wyznaczenia rozwiązania szczególnego – składowej wymuszonej – rozwiązania równania niejednorodnego Rozwiązanie równania niejednorodnego proponujemy w postaci:
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 4 Rozwiązanie to musi spełniać równanie niejednorodne z drugiej strony, podstawiając proponowane rozwiązanie do równania stanu porównując
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 5 podstawiając ostatni wynik do proponowanego rozwiązania Rozwiązanie szczególne – rozwiązanie równania niejednorodnego, zatem: Podsumowując – rozwiązanie równania stanu Składowa swobodna Składowa wymuszona
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 6 Weźmy równanie wyjścia: Wyjście policzymy podstawiając uzyskany wynik rozwiązania równania stanu Podsumowanie:
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 7 Kluczowy problem przy korzystaniu z tego rozwiązania – obliczenie - macierz tranzycji stanu – macierz fundamentalna I sposób – z definicji szeregu wykładniczego
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 8 Przykład 1: Model części mechanicznej silnika prądu stałego, przy zaniedbaniu dynamiki obwodu twornika, wpływu na ten odwód obwodu wzbudzenia i pominięciu momentu obciążenia zewnętrznego można zapisać Przyjmując: otrzymamy Przyjmijmy dla uproszczenia rachunków: oraz
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 9 Policzmy potęgi A:
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 10 Korzystamy z definicji Czasem nie ma potrzeby liczenia granicy szeregu Przykład 2:
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 11 Policzmy potęgi A:
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 12 Szereg potęgowy zawiera skończoną liczbę wyrazów
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 13 Wynik ten można uogólnić na dowolne n
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 14 II sposób pokażemy znajdując najpierw model przestrzeni stanu w dziedzinie zmiennej s
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 15 Przez porównanie rozwiązania równania stanu i wyjścia Możemy napisać
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 16 Przykład 3: macierz dołączona wyznacznik
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 17 Otrzymujemy:
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 18 Rozkład na ułamki proste elementów macierzy Podobnie
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 19 Otrzymujemy Ostatecznie macierz tranzycji
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 20 Przykład 4: Policzmy najpierw: Policzymy odpowiedzi układu przy zadanych warunkach początkowych na jednostkowe wymuszenie skokowe
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 21 Stąd: Stąd bezpośrednio:
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 22 Dla podanych warunków początkowych składowa swobodna odpowiedzi stanu i wyjścia :
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 23 Dla skokowego jednostkowego wejścia transformata Laplacea składowej wymuszonej odpowiedzi stanu i wyjścia (w dziedzinie zmiennej s)
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 24 Dla skokowego jednostkowego wejścia składowa wymuszona odpowiedzi stanu i wyjścia Pełna odpowiedź stanu i wyjścia
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 25 Związki z transmitancją Dla układu SISO: Odpowiedź wyjścia: Funkcja przejścia - transmitancja Funkcja tranzycji stanu
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 26 Otrzymaliśmy: Transmitancja: Odpowiedź impulsowa:
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 27 System dyskretny; model przestrzeni stanu (zmiennych stanu) – odpowiedzi Poszukujemy rozwiązań Będziemy przyjmowali: Rozwiązanie równania stanu w postaci rekursywnej:
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 28 W ogólnej postaci: Macierz tranzycji stanu: Jest to odpowiednik w dziedzinie czasu ciągłego macierzy Porównanie odpowiedzi stanu Składowa swobodna Składowa wymuszona
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 29 Odpowiedź wyjścia: Możemy np. policzyć odpowiedź wyjścia na sekwencję impulsu jednostkowego:
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 30 Transformata Z Odpowiednikiem transformacji s Laplacea dla systemów ciągłych jest transformacja z dla systemów dyskretnych Interesują nas podobnie: sygnały o wartości zero dla ujemnych chwil czasowych i jednostronna transformacja z Dwa alternatywne sposoby zdefiniowania: Definicja 1: Mając daną sekwencję sygnałów jej transformację z definiujemy jako Zmienną z -1 możemy traktować w podanej definicji jako operator opóźnienia w czasie – wskaźnik pozycji sygnału w sekwencji
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 31 Pożytki: Zastąpienie nieskończonego ciągu jego sumą (szereg) mogącą mieć użyteczną postać do analizy Pytania: - istnienie sumy – zbieżność szeregu - możliwość odtworzenia z wynikowego wyrażenia zmiennej z elementów sekwencji w dziedzinie czasu
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 32 Definicja druga związana jest z sekwencją uzyskaną z próbkowania z okresem T s sygnału ciągłego i transformacją Laplacea gdzie Ilustracja związków dziedzina ciągła – dziedzina dyskretna poprzez idealny impulsator
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 33 Transformacja Laplacea tej sekwencji dana jest Definiując zmienną z Otrzymujemy Definicja 2: Mając daną sekwencję sygnałów z próbkowania ciągłej funkcji f(t) z okresem T s w postaci
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 34 Doszliśmy do określenia transformacji z lub z zastrzeżeniem, że transformata z istnieje tylko wtedy, gdy istnieje pewne z dla którego szereg z definicji jest zbieżny
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 35 Szereg geometryczny zbieżny Przykład 5 Rozważmy sekwencję skoku jednostkowego z określonym okresem próbkowania Mamy Jeżeli szereg jest zbieżny i transformata z istnieje
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 36 Przykład 6 Rozważmy funkcję Przy próbkowaniu z okresem Transformata z Jeżeli szereg jest zbieżny i transformata istnieje
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 37 Transformaty z wybranych sekwencji sygnałów Sekwencja Transformata Z
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 38 Wybrane właściwości - transformaty z funkcji przesuniętych w czasie gdzie k jest dodatnie oraz - przesunięcie wstecz - przesunięcie wprzód - twierdzenie o wartości początkowej - twierdzenie o wartości końcowej
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 39 Korzystając z definicji i podanych własności możemy dokonać transformacji dyskretnego równania stanu i znaleźć jego odpowiednik w dziedzinie zmiennej z otrzymamy Ostatnie równanie może być rozwiązane względem transformaty X(z) Wprowadzając oznaczenie Możemy to rozwiązanie zapisać w postaci
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 40 Równanie wyjścia w dziedzinie zmiennej z
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 41 Przez porównanie rozwiązania równania stanu i wyjścia Możemy napisać
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 42 Dla skorzystania z tej ostatniej zależności potrzebna jest umiejętność przeprowadzania transformacji odwrotnej z, czyli znajdowania wartości funkcji w chwilach próbkowania Transformacja odwrotna znajduje tylko wartości funkcji w chwilach próbkowania, ale nie umożliwia znalezienia okresu próbkowania Dla znajdowania wartości funkcji w chwilach próbkowania – sekwencji wartości, praktycznie znajduje się wykorzystując dzielenie wielomianów rozkład na ułamki
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 43 Dzielenie wielomianów Z definicji transformacji Z Jeżeli w jakiś sposób potrafimy przedstawić funkcję F(z) w postaci to jest oczywiste, że Jeżeli F(z) jest funkcją wymierną – ułamkiem wielomianów, to wartości c i mogą być znalezione drogą dzielenia wielomianów
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 44 Przykład 7 Znaleźć f[k] - dzielimy licznik i mianownik przez największa potęgę z
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 45 - dzielimy licznik przez mianownik
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 46 - obliczamy wartość początkową Otrzymaliśmy
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 47 rozkład na ułamki Metoda prawie identyczna to metody używanej w odwrotnej transformacji Laplacea Ponieważ większość funkcji z ma składnik z w liczniku, jest czasem dogodniej przeprowadzać rozkład na ułamki proste dla F(z)/z niż dla F(z) Procedura 1. znaleźć rozkład na ułamki proste F(z)/z lub F(z) 2. określ odwrotną transformatę f[k] korzystając z tablic transformat z
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 48 Przykład 8 Przypadek: pojedyncze pierwiastki rzeczywiste Znaleźć transformatę odwrotną funkcji: - rozkład na ułamki proste z dzieleniem F(z)/z
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 49 stąd - spojrzenie w tablice Można zauważyć zatem
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 50 bez dzielenia F(z) - rozkład na ułamki proste stąd
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 51 - spojrzenie w tablice zatem
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 52 Wyprowadziliśmy uprzednio równanie stanu i równanie wyjścia dla systemu dyskretnego Odwrotna transformacja Z wyprowadzonych równań
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 53 Dla warunku początkowego Funkcja przejścia - transmitancja Wyjście Wejście Transmitancja systemu dyskretnego Transformata wyjścia systemu dyskretnego
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 54 Model dyskretny systemu ciągłego Odpowiedź stanu systemu ciągłego (t 0 = 0) lub Dla dwóch kolejnych chwil próbkowania Przemnażając przez wyrażenie na i odejmując od wyrażenia na
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 55 Przyjmując, że u(t) jest stałe pomiędzy chwilami próbkowania Odpowiedź stanu systemu ciągłego (t 0 = 0) Zmieniając zmienna całkowania Definiujemy macierze możemy napisać równanie stanu lub w postaci uproszczonej
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 56 Odpowiadające równanie wyjścia przy czym Dla wartości własnych macierzy A oraz A D zachodzi (twierdzenie Frobeniusa)
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 57 Podsumowanie Mając model systemu ciągłego: Model systemu dyskretnego: przy czym:
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 58 Przykład 9 Dany jest model transmitancyjny systemu ciągłego Zbudować model przestrzeni stanu ciągły i dyskretny Metoda zmiennej pomocniczej
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 59 Zmienne stanu Równania stanu w dziedzinie zmiennej s Równania stanu w dziedzinie zmiennej t Równania wyjścia w dziedzinie zmiennej s Równania wyjścia w dziedzinie zmiennej t
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 60 Ostatecznie Macierz tranzycji w dziedzinie zmiennej s Macierz tranzycji w dziedzinie zmiennej t
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 61 Wprowadzenie impulsatora i ekstrapolatora zerowego rzędu Dla okresu próbkowania T s = 1s
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 62
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 63 Przykład 10 Dany jest model systemu ciągłego w przestrzeni stanu Znaleźć odpowiedź modelu dyskretnego na wymuszenie skokowe jednostkowe Wartości własne systemu są zespolone, sprzężone Układ drugiego rzędu oscylacyjny, o pulsacji drgań nietłumionych i współczynniku tłumienia odpowiednio
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 64 Dyskretyzacja z wprowadzeniem impulsatora i ekstrapolatora zerowego rzędu Dla T s = 0.1 otrzymamy I oczywiście
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 65 Wartości własne macierz A D Sprawdzić! Stan i wyjście policzymy rekurencyjnie, zakładając zerowe warunki początkowe
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 66 Wynik
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 67 Przebieg zmiennych stanu, T s = 0.1s
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 68 Przebieg zmiennej wyjścia, T s = 0.1s
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 69 Przebieg zmiennej wyjścia, T s = 0.5s
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 70 Przebieg zmiennej wyjścia, T s = 2s
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 71 Transmitancja, T s = 0.1s
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 72 Ostatecznie