Symulacje własności pamięci biologicznej.

Slides:



Advertisements
Podobne prezentacje
Włodzisław Duch Katedra Informatyki Stosowanej,
Advertisements

Sieć jednokierunkowa wielowarstwowa
SIECI NEURONOWE Sztuczne sieci neuronowe są to układy elektroniczne lub optyczne, złożone z jednostek przetwarzających, zwanych neuronami, połączonych.
Inteligencja Obliczeniowa Metody oparte na podobieństwie do wzorców.
Inteligencja Obliczeniowa Modele neuronowe
Inteligencja Obliczeniowa Sieci dynamiczne cd.
Inteligencja Obliczeniowa Binarne modele pamięci skojarzeniowych
Inteligencja Obliczeniowa Otwieranie czarnej skrzynki.
Katedra Informatyki Stosowanej UMK
Katedra Informatyki Stosowanej UMK
Uczenie konkurencyjne.
Samoorganizacja: uczenie bez nadzoru.
Inteligencja Obliczeniowa Sieci dynamiczne.
Inteligencja Obliczeniowa Perceptrony o dużym marginesie błędu
Inteligencja Obliczeniowa Sieci o zmiennej strukturze.
Inteligencja Obliczeniowa Perceptrony
Wykład 8 Neuropsychologia komputerowa
Sztuczne sieci neuronowe
Sztuczna Inteligencja Reprezentacja wiedzy II
Procesy poznawcze cd Uwaga.
Organizacja pamięci: struktury, procesy, systemy
Pamięć utajona (pamięć bez świadomości, ukryta, implicite,)
Przechowywanie i zapominanie informacji
Wykład 15 Neuropsychologia komputerowa
Zastosowania kognitywistyki
Zastosowanie pamięci semantycznej we wspomaganiu decyzji medycznych
Fizyka umysłu. Włodzisław Duch
W kierunku fizyki umysłu.
Komputerowe modele problemów neurologicznych i demencji
Jak działa mózg? Uwagi dla modelarzy.
Obserwowalność System ciągły System dyskretny u – wejścia y – wyjścia
Krzysztof Suchecki wybrana prezentacja z konferencji ECCS'07 w Dreźnie Interacting Random Boolean Networks.
mgr inż. Rafał Komański styczeń 2004
Sieci Hopfielda.
Procesy uwagi Uwaga jest mechanizmem redukcji nadmiaru informacji
Funkcja i jej zaburzenia Maciej Kopera
Procesy poznawcze cd Uczenie się.
Wspomaganie decyzji nie zwalnia od decyzji...
Uczenie w Sieciach Rekurencyjnych
Universalne Modele Uczenia - Cwiczenia
Systemy wspomagania decyzji
Modelowanie i Identyfikacja 2011/2012 Metoda propagacji wstecznej Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 1 Warstwowe.
Aktywne przetwarzanie informacji
Pamięć deklaratywna: semantyczna i epizodyczna
Sekwencje Jak modelować relacje i sekwencje słów?
Uczenie się, pamięć , wyższe czynności nerwowe
SYSTEMY EKSPERTOWE I SZTUCZNA INTELIGENCJA
Warstwowe sieci jednokierunkowe – perceptrony wielowarstwowe
Model Lopesa da Silvy – opis matematyczny Zmienne modelu: V e (t) – średni potencjał w populacji pobudzającej E(t) – średnia częstość odpalania w populacji.
Od neuronow do populacji
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA
© Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania Modelowanie i podstawy identyfikacji 2015/2016 Modele neuronowe – podstawy,
Sieci dynamiczne Sieci Neuronowe Wykład 16 Włodzisław Duch Uniwersytet Mikołaja Kopernika Google: W. Duch.
dr hab. Adriana Schetz IF US
Belief Nets Autor: inż. 2013r źródło tła:
Sztuczne Sieci Neuronowe Modele neuronowe
Inteligencja Obliczeniowa Perceptrony o dużym marginesie błędu
RODZAJE DRÓG a RODZAJE EMOCJI
Systemy neuronowo – rozmyte
Samoorganizacja: uczenie bez nadzoru
Perceptrony o dużym marginesie błędu
Sztuczne Sieci Neuronowe Modele neuronowe
Jak działa mózg? Uwagi dla modelarzy.
Włodzisław Duch Katedra Informatyki Stosowanej,
Perceptrony o dużym marginesie błędu
Inteligencja Obliczeniowa Perceptrony
Inteligencja Obliczeniowa Modele neuronowe
Samoorganizacja: uczenie bez nadzoru
Perceptrony wielowarstwowe, wsteczna propagacja błędów
Zapis prezentacji:

Symulacje własności pamięci biologicznej. Włodzisław Duch Katedra Informatyki Stosowanej, Uniwersytet Mikołaja Kopernika, Grudziądzka 5, 87-100 Toruń. WWW: http://www.phys.uni.torun.pl/~duch (c) 1999. Tralvex Yeap. All Rights Reserved

Plan Fizyka i sieci neuronowe. Pamięć Najprostsze modele pamięci skojarzeniowych Sieci atraktorowe Pamięć semantyczna Pamięć robocza i SMNI Pamięć epizodyczna. Model amnezji Degeneracja pamięci Leabra - symulacje psychologiczne Perspektywy modeli neuronowych

Sieci neuronowe i fizyka Wielkie wyzwanie fizyki: stworzenie modelu świata, który da się zrozumieć. Mózg: najbardziej skomplikowany obiekt w znanym Wszechświecie. Działanie mózgu mogą wyjaśnić tylko modele, na wielu poziomach, od molekuł do globalnych stanów dynamicznych. Mózg jest zbyt ważny, by zostawić go neurofizjologom. Neurofizyka i neuroinformatyka; Cognitive computational neurosciences. Institute for Theoretical Neurophysics, Uni Bremen

Sieci neuronowe 1938 N. Rashevsky, neurodynamika - sieci neuronowe jako układy dynamiczne, sieci rekurencyjne. 1943 W. McCulloch, W. Pitts, sieci neuronowe=układy logiczne 1958 F. Rosenblatt, perceptron, sieć jako funkcja; MLP, RBF, 1986 wsteczna propagacja błędów; liczne zastosowania. 1973 Chr. von der Malsburg, samoorganizacja w mózgu; 1982 Kohonen, Self-Organized Mapping Impulsujące szczegółowe modele neuronów Modele stochastyczne; sieci bezwagowe ...

Model Hopfielda Wektor potencjałów wejściowych V(0)=Vini , czyli wejście = wyjście. Dynamika (iteracje) Þ sieć Hopfielda osiąga stany stacjonarne = odpowiedzi sieci (wektory aktywacji elementów) na zadane pytanie Vini (autoasocjacja). t - czas dyskretny (numer iteracji). Stany stacjonarne = atraktory punktowe.

Reguła Hebba „Kiedy akson komórki A jest dostatecznie blisko by pobudzić komórkę B i wielokrotnie w sposób trwały bierze udział w jej pobudzaniu, procesy wzrostu lub zmian metabolicznych zachodzą w obu komórkach tak, że sprawność neuronu A jako jednej z komórek pobudzających B, wzrasta.” D. O. Hebb, 1949 Na poziomie molekularnym: LTP - Long Term Potentiation LTD - Long Term Depression E. Kandel, Nobel 2000

Pamięć Ze względu na czas trwania: LTM - pamięć długotrwała - lata. Kora + hipokamp. Pamięć krótkotrwała (STM), robocza (WM), operacyjna - sekundy do minut, przy ciągłym odświeżaniu godzin; aktualizuje kombinacje stanów LTM. Stan dynamiczny mózgu. Pamięć natychmiastowa, ikonograficzna, pętla fonologiczna - od ułamków do kilku sekund. Lokalny stan dynamiczny. Ze względu na rodzaje pamięci. Pamięć rozpoznawcza (recognition memory) - już to widziałem, choć nie mogłem sobie przypomnieć (kora śród- i około-węchowa). Pamięć opisowa (deklaratywna): epizodyczna i semantyczna. Pamięć nieopisowa (niedeklaratywna): proceduralna, odruchów warunkowych (gotowości reakcji, dyspozycyjności), habituacja-sentetyzacja (nieasocjacyjna) oraz torowanie (priming). Pamięć jawna (świadoma, explicit) i utajona (nieświadoma, implicit). Pamięć emocjonalna - często utajona, ale dzięki połączeniom hipokamp-kora przejściowa-ciało migdałowate bywa jawna.

BCM: pamięć autoasocjacyjna 1 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 W - macierz połączeń synaptycznych. q - próg pobudzenia 110000 010001 Pamięć rozpoznawcza. Niższy próg - rozpoznawanie błędnych wektorów. Binarne synapsy - możliwe biologicznie! Resorpcja kolców dendrytycznych. BAM, Bidirectional Associative Memory - heteroasocjacja.

Cechy modelu BCM Zdolność do rozpoznawania uszkodzonych wzorców – adresowalność kontekstowa. Czas nie zależy od liczby zapamiętanych wzorców. Uszkodzenie części macierzy połączeń nie prowadzi do zapomnienia konkretnych wzorców - brak lokalizacji. Interferencja (mylenie się) dla podobnych wzorców jest częstsza niż dla wzorców odmiennych. Przepełnienie pamięci (macierzy wag) prowadzi do chaotycznego zachowania. Wniosek: najprostsze systemy rozproszone wykazują cechy typowej pamięci skojarzeniowej.

Pamięć i atraktory Za pamięć biologiczną odpowiedzialne są sieci atraktorowe. Modele wyrastające z sieci Hopfielda - tylko atraktory punktowe, zbyt proste. DMS, Delayed Match to Sample - małpa musi nauczyć się sekwencji wielu obrazów; w fazie testu po krótkiej prezentacji jednego obrazu i przerwie rzędu 30 s ma pokazać sekwencję kilku obrazów. Wysoka aktywność (20 Hz) neuronów IT i PF do 30 s po prezentacji, pomiary z wielu elektrod. Korelacje czasowe przechodzą w korelacje aktywności. Model Amita pozwala odtworzyć krzywą korelacji.

Model Amita D. Amit, N. Brunel, S. Fusi, 1993-2000, teoria i symulacje Spoczynkowa aktywność neuronów (1-5 impulsów/s) Ok. 10.000 impulsów/s dochodzi do neuronu w pobliżu progu. 1. Stabilna sieć z aktywnością spoczynkową: globalny atraktor. 2. Uczenie się przez tworzenie nowych atraktorów. Założenia ogólne: Aktywność tła ma charakter stochastyczny. Jednorodność: neurony w identycznym środowisku. Wystarczy aktywność neuronu = liczbie impulsów na sekundę. Spontaniczna aktywność różnych neuronów nie jest skorelowana. Aktywacja neuronu jest sumą wkładów synaptycznych. Gaussowski rozkład wkładów synaptycznych.

Schemat kolumny Sieć kolumn (ok. 1 mm2), każda 105 neuronów = 103 mikrokolumn. Połączenia: populacje pobudzające i hamujące (bez adaptacji) wewnątrz modułu, pobudzające dochodzące z zewnątrz (komórki piramidowe). 50-80% impulsów z lokalnych obwodów pobudzających. Ok. 20% jednostek hamujących; 104 synaps E i 2000 synaps I na neuron.

Działanie sieci Sprawności synaptyczne: tylko LTP i LTD, ok. 5x słabsze. Depolaryzacja membrany V(t) o t10ms opisana jest równaniem: Wyniki symulacji programem SpikeNet, 2000-400.000 neuronów. Uczenie: początkowo moduł biorący udział w rozpoznawaniu zwiększa w nieselektywny sposób częstość impulsacji dla wszystkich sygnałów. Powyżej krytycznej wartości wzmocnienia LTP pojawiają się lokalne atraktory na tle globalnej aktywności - struktura sygnału uczącego. Etap 1: komórki mikrokolumn reagują na nauczone bodźce. Etap 2: aktywność spoczynkowa rośnie do około 20 Hz, utrzymuje się po zniknięciu bodźca - aktywna reprezentacja bodźca w pamięci. Pobudzenia wewnętrzne silniejsze niż zewnętrzne, utrzymują spontaniczną aktywność, modelowane przez rozkład Poissona. Etap 3: powstają korelacje pomiędzy mikrokolumnami. Implementacja VLSI - gotowa.

Pamięć semantyczna Jak z epizodów tworzy się pamięć semantyczna? Model McClleland-Naughton-O’Reilly (1995). Uczenie synaptyczne, powstawanie reprezentacji wewnętrznych. Relacje pomiędzy wektorami pobudzeń dla słów da się zinterpretować w przestrzeni ok. 300-wymiarowej. Porównanie rezultatów eksperymentów mierzących szybkość skojarzeń i wektorów w przestrzeni cech na obrazach MDS. Semantyka - oparta na relacjach podobieństwa.

Pamięć robocza Pamięć aktywna, dynamiczna, jej zawartość to treść świadomości. Czas trwania rzędu sekund, pojemność 7±2 obiekty (Miller 1956). Testy: głównie nieskorelowane słowa/liczby/symbole. Porcjowanie: grupowanie prostszych obiektów w obiekty wyższego rzędu, mechanizm uczenia „divide and conquer”, pozwala pamiętać więcej pomimo ograniczeń STM. Dla obiektów wzrokowych STM mieści tylko 4±2 obiekty - np. chińskie znaki jeśli ktoś nie zna chińskiego. Jak WM wiąże się z aktywnością EEG? Jak uzasadnić „magiczną” liczbę 7?

SMNI Lester Ingber, od 1983 r, SMNI, Statistical Mechanics of Neocortical Interactions (Phys. Rev. A & E). Teoria statystyczna, uśrednianie po mikro i minikolumnach. Mikrokolumy 110 neuronów; kolumny 105- 106 neuronów. Mezoskopowy nieliniowy Lagrangian określa rozkład p. impulsacji w mikrokolumnie po oddziaływaniu z neuronami kolumny, uwzględniając oddziaływania międzykolumowe (neurony piramidowe) i szum synaptyczny. Ewolucja parametrów modelu (sprawności synaptyczne, progi pobudzeń, częstości impulsacji n. hamujących i pobudzających) symulowana jest (PATHINT) metodą całkowania po trajektoriach a parametry dopasowane za pomocą Adaptive Simmulated Annealing.

Rezultaty SMNI Pierwsze oszacowania pojemności STM w 1984 roku. Atraktory STM: warunkowe rozkłady prawdopodobieństwa pobudzeń kolumn kory. Czas t =10 ms. Lokalne oddziaływania minikolumn - czasy rzędu 5t wystarczą do silnych interferencji atraktorów. Konieczne są oddziaływania długozasięgowe i „odświeżanie” falami 40 Hz: naiwne oszacowanie: 25 ms/3.5ms7. Reguła 7±2 i 4±2 - różnica wynika z l. neuronów/mikroklumnę. Większość kory - 110 n/mikrokolumna; kora wzrokowa ma 220. Efekt najlepszego pamiętania początku i końca listy, najsłabiej w środku - statystyka atraktorów. Struktura EEG - oscylacje 16 Hz, korelaty WM?

Pamięć epizodyczna Układ neuromodulacji reguluje plastyczność hipokampa i kory. Pamięć średnioterminowa zapisana jest w sieciach hipokampa, jako wskaźniki do kolumn kory (?) Pamięć trwała jest rezultatem stanów atraktorowych minikolumn kory mózgu, zapisana jest w synapsach w sposób rozproszony. Pamięć epizodyczna - odtworzenie stanu mózgu w momencie epizodu.

Powstawanie trwałej pamięci

Amnezja wsteczna Główna przyczyna: utrata łączy do kory. Objawy: gradienty Ribota czyli im starsze wspomnienia tym lepiej pamiętane.

Amnezja następcza Główna przyczyna: uszkodzenie systemu neuromodulacji. Wtórnie: utrata łączy z korą. Objawy: Brak możliwości zapamiętania nowych faktów.

Amnezja semantyczna Główna przyczyna: uszkodzenie łączy wewnątrzkorowych. Objawy: Trudności w znajdowaniu słów, rozumieniu, zapamiętanie nowych faktów wymaga ciągłego powtarzania.

Symulacje Murre, Meeter (w trakcie): uszkodzenie łączy wewnątrzkorowych. 200 kolumn korowych; 42 kolumny hipokampa; neuromodulacja wpływa na parametry, ale nie jest explicite uwzględniana. Połączenia wewnątrz i pomiędzy neuronami - bez ograniczeń. Binarne neurony stochastyczne, p. wysłania impulsu zależy od pobudzeń i hamowania, szybkiego (wymuszone I) i powolnego (spontaniczne I). Uczenie Hebbowskie (Singer 1990), szybkość uczenia w korze mała. Nakrywanie wzorców: spore w hipokampie, niewielkie w korze. Symulacje normalnego uczenia i przypominania: akwizycja - szybkie uczenie, hipokamp. konsolidacja - powolne korowe, spontaniczne przypominanie; testowanie - częściowe wektory, ile kolumn prawidłowo pobudzonych? Potęgowe prawo zapominania, w wyniku interferencji nowych faktów. Gradienty Ribota i amnezja wsteczna; zanik RA, chwilowa amnezja globalna (TGA) w wyniku zaniku aktywności w hipokampie; AA i jej korelacje z RA; izolowana RA, pamięć utajona, poziomy analizy ...

Degeneracja pamięci Silne synapsy ulegają dalszemu wzmocnieniu. Degeneracja pamięci, np. w chorobie Alzheimera, może być związana z utratą słabych synaps. Jak wpłynie taka utrata na pojemność pamięci? Odpowiedzi - na razie tylko w oparciu o modele Hopfielda. Kompensacja - pozostałe synapsy mogą się zaadoptować do nowej sytuacji. Jaka kompensacja jest najlepsza? d - stopień uszkodzenia k=k(d) funkcja kompensacji Silne synapsy ulegają dalszemu wzmocnieniu. Samo d nie świadczy jeszcze o stopniu uszkodzenia pamięci.

Kompensacja Poprawne odpowiedzi jako funkcja ułamka usuniętych połączeń bez i z kompensacją. Zmiana wielkości basenów atrakcji w wyniku uczenia z kompensacją.

Leabra Realizm biologiczny. Rozproszone reprezentacje. Konkurencja k-WTA. Dwukierunkowa propagacja aktywacji. Uczenie Hebbowskie. Uczenie redukujące błędy. Wiele zastosowań do modelowania percepcji, uwagi, pamięci, zjawisk lingwistycznych i myślenia/planowania.

Eksperymenty A-not B Piaget (1954) - eksperymenty A-not B z niemowlętami i małpami. E - eksperymentator, N - niemowlę, A, B - miejsca 1. N obserwuje, jak E chowa zabawkę w A, po krótkiej przerwie ją tam znajduje; powtarza się to kilka razy. 2. N obserwuje, jak E chowa zabawkę w B, ale po krótkiej przerwie szuka zabawki nadal w A. Uczenie faworyzuje A, aktywacja WM (kora prefrontalna) B. Lezje kory prefrontalnej u rezusów i N - silny efekt A-not B. Konkurencja pomiędzy uczeniem synaptycznym i aktywacjami. Symulacje - Munakata (1998).

Co się dzieje w mózgu?

Perspektywy Sieci impulsujące, bliższe temu, co neurofizjolog mierzy. Modele pamięci obejmujące szerszy zakres zjawisk. Integracja z modelami układów sensorycznych. Integracja z czynnościami poznawczymi. Fizyka umysłu?