GRAFY PLANARNE To grafy, które można narysować na płaszczyźnie tak, by krawędzie nie przecinały się (poza swoimi końcami). Na przykład K_4, ale nie K_5.

Slides:



Advertisements
Podobne prezentacje
Sympleksy n=2.
Advertisements

Wycinanki - składanki czyli o mierze inaczej.
DOMINOWANIE W GRAFACH Magdalena Lemańska.
Grafy spełniające nierówność Γ(G) < IR(G)
Zadania przygotowawcze na egzamin
Grafy o średnicy 2 i dowolnej liczbie dominowania
11. Różniczkowanie funkcji złożonej
Grafy inaczej, czyli inne modele grafów
Kolorowanie grafów Niech G = (V, E) będzie spójnym grafem nieskierowanym bez pętli. Kolorowaniem wierzchołków grafu nazywa się przypisanie wierzchołkom.
Homologia, Rozdział I „Przegląd” Homologia, Rozdział 1.
WYKŁAD 6. Kolorowanie krawędzi
ELEMENTY TEORII GRAFÓW
Wykład 6 Najkrótsza ścieżka w grafie z jednym źródłem
Minimalne drzewa rozpinające
Temat: WIELOŚCIANY KLASA III P r.
Przygotowały: Jagoda Pacocha Dominika Ściernicka
Trian_mon(P) Input: y-monotoniczny wielokąt zapamiętany jako zbiór boków, Output: triangulacja D jako zbiór krawędzi. Wyodrębnij prawy i lewy łańcuch punktów,
Twierdzenie Thevenina-Nortona
Ciągi de Bruijna generowanie, własności
-skeletony w przestrzeniach R 2 i R 3 Mirosław Kowaluk Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski.
ALGORYTMY GEOMETRYCZNE.
WYKŁAD 5. Skojarzenia – ciąg dalszy
WYKŁAD 2. Kolorowanie wierzchołków
WYKŁAD 7. Spójność i rozpięte drzewa
WYKŁAD 1. Grafy są wokół nas. Pojęcia wstępne.
WYKŁAD 4. Skojarzenia Skojarzenie w grafie G to niezależny zbiór krawędzi (rozłączne, bez wspólnych konców). Skojarzenie M w G traktujemy jak podgraf.
WYKŁAD 8. Siła spójności Wierzchołek v nazywamy wierzchołkiem cięcia grafu G, gdy podgraf G-v ma więcej składowych spójności niż G. Krawędź e nazywamy.
WĘDRÓWKI PO GRAFACH Obchody Eulera Cykle Hamiltona.
WYKŁAD 8. Siła spójności A,B – dowolne podzbiory V(G)
KOLOROWANIE MAP.
WYKŁAD 3. Kliki i zbiory niezależne
WYKŁAD 5. Skojarzenia – ciąg dalszy
WYKŁAD 4. Skojarzenia Skojarzenie w grafie G to niezależny zbiór krawędzi (rozłączne, bez wspólnych konców). Skojarzenie M w G traktujemy jak podgraf G.
Analiza Matematyczna część 2
Materiały pomocnicze do wykładu
Elementy Kombinatoryki (c.d.)
Macierz incydencji Macierzą incydencji grafu skierowanego D = (V, A), gdzie V = {1, ..., n} oraz A = {a1, ..., am}, nazywamy macierz I(D) = [aij]i=1,...,n,
WYKŁAD 7. Spójność i rozpięte drzewa Graf jest spójny, gdy dla każdego podziału V na dwa rozłączne podzbiory A i B istnieje krawędź z A do B. Definicja.
Przepływy w sieciach. Twierdzenie minimaksowe.
Projekt badawczy: „Czy istnieje prosta zależność między liczbą ścian S, krawędzi K i wierzchołków W wielościanu lub związek między jego kątami i S, K,
MATEMATYKAAKYTAMETAM
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Dodatkowe własności funkcji B-sklejanych zawężenie f do K Rozważmy funkcjeIch zawężenia do dowolnego przedziałutworzą układ wielomianów. Dla i=k ten układ.
Geometria obliczeniowa Wykład 3
Paradoksy logiczne i inne 4 marca 2010.
Trójkąty.
Geometria obliczeniowa Wykład 7
Języki i automaty część 3.
PODSTAWOWE WŁASNOŚCI PRZESTRZENI
Przypomnienie wiadomości o figurach geometrycznych.
Bryły.
Grafika i komunikacja człowieka z komputerem
Kąt nachylenia ściany bocznej do płaszczyzny podstawy w ostrosłupie prawidłowym trójkątnym Opracował: Jerzy Gawin.
BRYŁY.
Geometria obrazu Wykład 6
S H D C a O A a B. Kąt nachylenia ściany bocznej do płaszczyzny podstawy w ostrosłupie prawidłowym czworokątnym.
PLANARNOŚĆ i KOLOROWANIE MAP. Problem Jaka jest minimalna liczba kolorów, za pomocą których można pokolorować obszary województw na mapie Polski tak,
Drogi i cykle Eulera w grafach nieskierowanych
WĘDRÓWKI PO GRAFACH Obchody Eulera Cykle Hamiltona.
GRA CHOMP. Czym jest chomp? Jest to gra dla dwóch osób, rozgrywana na prostokątnej tablicy, zwanej „tabliczką czekolady”
WYKŁAD 5. Skojarzenia – ciąg dalszy Skojarzenie w grafie G to niezależny zbiór krawędzi (rozłączne, bez wspólnych końców). α’(G) – moc największego skojarzenia.
WIELOKĄTY Karolina Zielińska kl.v Aleksandra Michałek kl v
Pojęcia podstawowe c.d. Rachunek podziałów Elementy teorii grafów
Punkt najmniejszy obiekt geometryczny ma zawsze zerowe rozmiary Fot. dla: Sxc.hu oraz
FIGURY PŁASKIE.
Graniastosłup jest to wielościan, którego wszystkie wierzchołki są położone na dwóch równoległych płaszczyznach, zwanych podstawami graniastosłupa i.
Figury płaskie.
GEODEZYJNE W PRZETRZENIACH METRYCZNYCH
Bryły Przestrzenne Wokół Mnie
Geometria obliczeniowa Wykład 7
Zapis prezentacji:

GRAFY PLANARNE To grafy, które można narysować na płaszczyźnie tak, by krawędzie nie przecinały się (poza swoimi końcami). Na przykład K_4, ale nie K_5. Formalna definicja prowadzi przez grafy płaskie.

Grafy płaskie G=(V,E) nazywamy grafem płaskim, gdy V jest skończonym podzbiorem punktów płaszczyzny euklidesowej, a E to zbiór krzywych Jordana o końcach w V i takich, że: 1) rożne krzywe mają różne pary końców, 2) „wnętrza” krzywych nie zawierają punktów innych krzywych zbioru E ani żadnych punktów zbioru V. Graf płaski jest grafem abstrakcyjnym o zbiorze wierzchołków V i zbiorze krawędzi E, ale też zbiorem punktów

Ilustracja

Ściany jest otwartym podzbiorem płaszczyzny jego obszary spójne nazywamy ścianami G dokładnie 1 ściana jest nieograniczona – nazywamy ją zewnętrzną. brzeg ściany albo daną krawędź zawiera albo jest rozłączny z jej wnętrzem.

Ilustracja S3 S1 S2 S3 S3 – ściana zewnętrzna

Mosty i nie-mosty Niech C będzie cyklem w grafie płaskim G. Jeśli e należy do C, to e leży na brzegu dokładnie dwóch ścian i te ściany zawarte są w 2 różnych ścianach grafu C. Jeśli e jest mostem, to e leży na brzegu dokładnie jednej ściany. Wniosek: płaski las ma tylko jedną ścianę.

Ilustracja: mosty, cykle

2-spójne grafy płaskie Fakt: W 2-spójnym grafie płaskim brzeg każdej ściany jest cyklem. Dowód: Indukcja z wykorzystaniem konstrukcyjnej charakterystyki grafów 2-spójnych (ćw). H P

Triangulacje Graf płaski nazywamy maksymalnym, gdy żaden jego nadgraf właściwy o tym samym zbiorze wierzchołków nie jest płaski. Graf płaski nazywamy triangulacją, gdy brzeg każdej ściany jest trójkątem. Fakt. Graf płaski o co najmniej 3 wierzchołkach jest maksymalny wgdy jest triangulacją.

Dowód Jeśli każda ściana jest trójkątem, to nie można dodać krawędzi, która nie naruszałaby warunków 1) i 2) z def. płaskości. G musi być 2-spójny, więc brzeg każdej ściany jest cyklem. Niech C będzie jednym z nich. Skoro G jest maksymalny, to V(C) jest kliką w G, której wszystkie krawędzie leżą na zewnętrznej ścianie C. Jest to jednak możliwe tylko, gdy |V(C)|<4 (patrz: rysunek). 

Ilustracja dowodu C

Zajrzyjmy do pudełek n=20, m=30, l=12 n=8, m=12, l=6 n-m+l=2

Wzór Eulera Tw. (Euler, 1752) W każdym spójnym grafie płaskim liczba wierzchołków n, liczba krawędzi m i liczba ścian l spełniają równość: n-m+l=2 Dowód: Indukcja względem m przy ustalonym n. Jeśli m=n-1, to G jest drzewem i l=1. Jeśli m>n-1, to G zawiera cykl. Usuńmy krawędź e z tego cyklu. Graf G-e ma 1 krawędź mniej i 1 ścianę mniej niż G. Stosujemy zał. ind. do G-e. 

Liczba krawędzi grafu płaskiego Wniosek: Graf płaski o n wierzchołkach ma nie więcej niż 3n-6 krawędzi, triangulacja ma ich dokładnie tyle. Dowód: Licząc krawędzie wokół każdej ściany triangulacji i sumując je, otrzymamy 2m, ale jednocześnie 3l. Stąd i ze wzoru Eulera pomnożonego przez 3, 3n-3m+2m=6.

Przykład triangulacji n=7, m=3n-6=15, l=10

Grafy planarne Graf G jest planarny, gdy jest izomorficzny z grafem płaskim. Mówimy wtedy, że można go zanurzyć w (narysować na) płaszczyźnie. Graf płaski, izomorficzny z G nazywamy rysunkiem G. Fakt: Każdy graf planarny posiada rysunek, którego krawędzie są odcinkami prostych. (ćw) K_4

Równoważność topologiczna Dwa rysunki tego samego grafu są topologicznie równoważne, gdy (multi)zbiory podgrafów będących brzegami ścian pokrywają się. Przykład: 2 top. równoważne rysunki K_4

Poniższe pary nie są równoważne 6 5 6 7 5 4

3-spójne grafy planarne Tw. (Whitney, 1932) Każde dwa rysunki 3-spójnego grafu planarnego są topologicznie równoważne. Lemat: Cykl C 3-spójnego grafu płaskiego jest brzegiem ściany wgdy C jest cyklem indukowanym a V(C) nie rozdziela G. Dowód Tw.:Z Lematu, każdy rysunek 3-spójnego grafu planarnego ma te same cykle na brzegach ścian.  Dowód Lematu:  Skoro V(C) nie rozdziela G, to przynajmniej 1 ze ścian C nie zawiera punktów G-C. Zatem C jest brzegiem ściany.

Dowód Lematu  Niech C będzie brzegiem ściany, a x,y dwoma (niesąsiednimi na C) wierzchołkami C. Z 3-spójności G, w G-{x,y} istnieje ścieżka P łącząca dwa łuki grafu C-{x,y}. Gdyby istniała krawędź xy, to przecinałaby P (bo obie muszą biec przez zewnętrzną ścianę C) – sprzeczność! (bo G jest płaski). Zatem C jest cyklem indukowanym.

Ilustracja y P C x

Dowód Lematu  c.d. Niech x,y należą do V(G)-V(C) Z 3-spójności G są między nimi co najmniej 3 niezależne ścieżki, które dzielą płaszczyznę na 3 rozłączne obszary. C musi się zawierać w jednym z nich, a więc jedna ze ścieżek omija C. Zatem zbiór V(C) nie rozdziela x,y.

Ilustracja x y C

Maksymalne grafy planarne Graf planarny jest maksymalny, gdy żaden jego nadgraf właściwy o tym samym zbiorze wierzchołków nie jest planarny. Rysunek maksymalnego grafu planarnego jest triangulacją, i odwrotnie, każda triangulacja jest maksymalnym grafem planarnym. Zatem, graf planarny o n>2 wierzchołkach jest maksymalny wgdy ma 3n-6 krawędzi. Triangulacje są 3-spójne (bez dowodu)

Ani, ani Wszystkie grafy na 4 wierzchołkach są planarne (bo K_4 jest planarny) Wszystkie grafy na 5 wierzchołkach są planarne, oprócz K_5 (ćw.) Wszystkie grafy dwudzielne na 6 wierzchołkach są planarne, oprócz K_{3,3} (ćw.) Ani K_5, ani K_{3,3} nie jest planarny Dowód dla K_5: m=10>9=3n-6 Dowód dla K_{3,3}: na ćwiczeniach!

D2 D1 D3 ? ? S1 S2 S3

Podziały topologiczne krawędzi G=TK_3 K_3 Nieformalny zapis G=TH oznacza, ze G jest jednym z grafów, które można otrzymać z grafu H przez topologiczne podziały krawędzi. (TH jest więc nieskończoną rodziną grafów)

Tw. Kuratowskiego Ani TK_5, ani TK_{3,3} nie jest planarny. Żaden graf planarny nie zawiera ich. Tw. (Kuratowski 1930) Graf G jest planarny wgdy nie zawiera ani TK_5 ani TK_{3,3}. (bez dowodu.)