WĘDRÓWKI PO GRAFACH Obchody Eulera Cykle Hamiltona.

Slides:



Advertisements
Podobne prezentacje
Funkcje tworzące są wygodnym narzędziem przy badaniu zmiennych losowych o wartościach całkowitych nieujemnych. Funkcje tworzące pierwszy raz badał de.
Advertisements

Sympleksy n=2.
Typy strukturalne Typ tablicowy.
Teoria Grafów.
DOMINOWANIE W GRAFACH Magdalena Lemańska.
Grafy spełniające nierówność Γ(G) < IR(G)
Zadania przygotowawcze na egzamin
Grafy o średnicy 2 i dowolnej liczbie dominowania
ALGORYTMY GRAFOWE.
Grażyna Mirkowska PJWSTK 15 listopad 2000
Grafy inaczej, czyli inne modele grafów
Kolorowanie grafów Niech G = (V, E) będzie spójnym grafem nieskierowanym bez pętli. Kolorowaniem wierzchołków grafu nazywa się przypisanie wierzchołkom.
WYKŁAD 6. Kolorowanie krawędzi
ELEMENTY TEORII GRAFÓW
Wykład 6 Najkrótsza ścieżka w grafie z jednym źródłem
Minimalne drzewa rozpinające
Algorytm Dijkstry (przykład)
ALGORYTMY I STRUKTURY DANYCH
Twierdzenie Thevenina-Nortona
Ciągi de Bruijna generowanie, własności
-skeletony w przestrzeniach R 2 i R 3 Mirosław Kowaluk Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski.
Liczby Pierwsze - algorytmy
ALGORYTMY GEOMETRYCZNE.
WYKŁAD 5. Skojarzenia – ciąg dalszy
WYKŁAD 2. Kolorowanie wierzchołków
WYKŁAD 7. Spójność i rozpięte drzewa
WYKŁAD 1. Grafy są wokół nas. Pojęcia wstępne.
WYKŁAD 4. Skojarzenia Skojarzenie w grafie G to niezależny zbiór krawędzi (rozłączne, bez wspólnych konców). Skojarzenie M w G traktujemy jak podgraf.
WYKŁAD 8. Siła spójności Wierzchołek v nazywamy wierzchołkiem cięcia grafu G, gdy podgraf G-v ma więcej składowych spójności niż G. Krawędź e nazywamy.
WYKŁAD 8. Siła spójności A,B – dowolne podzbiory V(G)
KOLOROWANIE MAP.
WYKŁAD 3. Kliki i zbiory niezależne
GRAFY PLANARNE To grafy, które można narysować na płaszczyźnie tak, by krawędzie nie przecinały się (poza swoimi końcami). Na przykład K_4, ale nie K_5.
WYKŁAD 5. Skojarzenia – ciąg dalszy
WYKŁAD 4. Skojarzenia Skojarzenie w grafie G to niezależny zbiór krawędzi (rozłączne, bez wspólnych konców). Skojarzenie M w G traktujemy jak podgraf G.
Dariusz Odejewski Krzysztof Wójcik
Elementy kombinatoryki
Materiały pomocnicze do wykładu
12 grudnia 2001Matematyka Dyskretna, Elementy Kombinatoryki G.Mirkowska, PJWSTK 1 Wykład 11 Elementy Kombinatoryki.
Elementy Kombinatoryki (c.d.)
Macierz incydencji Macierzą incydencji grafu skierowanego D = (V, A), gdzie V = {1, ..., n} oraz A = {a1, ..., am}, nazywamy macierz I(D) = [aij]i=1,...,n,
WYKŁAD 7. Spójność i rozpięte drzewa Graf jest spójny, gdy dla każdego podziału V na dwa rozłączne podzbiory A i B istnieje krawędź z A do B. Definicja.
Przepływy w sieciach. Twierdzenie minimaksowe.
Liczby Ramseya Klaudia Sandach.
SKIEROWANE Marek Bil Krzysztof Fitrzyk Krzysztof Godek.
Graf - jest to zbiór wierzchołków, który na rysunku przedstawiamy za pomocą kropek oraz krawędzi łączących wierzchołki. Czasami dopuszcza się krawędzie.
Algorytmy i struktury danych
Badania operacyjne Wykład 5.
Geometria obliczeniowa Wykład 3
Reprezentacja grafów i operacje na grafach na przykładzie algorytmu Dijkstry i algorytmu na odnajdywanie Silnych Spójnych Składowych Temat Opracowali:
Uniwersytet Dzieci Nieważne jaki masz komputer
Rodzaje, przechodzenie grafu
PODSTAWOWE WŁASNOŚCI PRZESTRZENI
Algorytmy i Struktury Danych
Geometria obliczeniowa Wykład 13 Planowanie ruchu 1.Znajdywanie ścieżki między dwoma punktami. 2.Ruch postępowy robota wielokątnego na płasz- czyźnie.
PLANARNOŚĆ i KOLOROWANIE MAP. Problem Jaka jest minimalna liczba kolorów, za pomocą których można pokolorować obszary województw na mapie Polski tak,
Algorytmy i Struktury Danych Grafy
Drogi i cykle Eulera w grafach nieskierowanych
WĘDRÓWKI PO GRAFACH Obchody Eulera Cykle Hamiltona.
GRA CHOMP. Czym jest chomp? Jest to gra dla dwóch osób, rozgrywana na prostokątnej tablicy, zwanej „tabliczką czekolady”
WYKŁAD 5. Skojarzenia – ciąg dalszy Skojarzenie w grafie G to niezależny zbiór krawędzi (rozłączne, bez wspólnych końców). α’(G) – moc największego skojarzenia.
Autor: Michał Salewski
Grafy.
Modelowanie matematyczne – złożoność obliczeniowa, teoria a praktyka
Geometria obliczeniowa Wykład 13 Algorytmy randomizowane 1.Lokalizacja punktu w siatce trapezów. 2.Znajdywanie średnicy zbioru punktów w R 3. Algorytmy.
Pojęcia podstawowe c.d. Rachunek podziałów Elementy teorii grafów
Analiza portfeli dwu- oraz trzy-akcyjnych. Portfel dwóch akcji bez możliwości krótkiej sprzedaży W - wartość portfela   W = a P 1 + b P 2   P 1 -
Zagadnienia transportowe Katedra Ekonomiki i Funkcjonowania Przedsiębiorstw Transportowych.
Działania na grafach Autor: Anna Targońska.
ALGORYTMY I STRUKTURY DANYCH
Zapis prezentacji:

WĘDRÓWKI PO GRAFACH Obchody Eulera Cykle Hamiltona

U źródeł teorii grafów 1736: Euler odwiedza Królewiec (Königsberg, Kaliningrad). Rozwiązuje zagadkę 7 mostów. Uogólnia problem i też go rozwiązuje, otrzymując 1. twierdzenie teorii grafów.

Mosty Królewieckie A C B D C A B D

Spacery i obchody Dla danego multigrafu G, ciąg W=v_0e_0v_1e_1...v_{k-1}e_{k-1}v_k nazywamy spacerem, gdy e_i=v_iv_{i+1} jest krawędzią w G dla każdego i<k. W (Na ?) spacerze wierzchołki i krawędzie mogą się powtarzać. Spacer jest zamknięty, gdy v_0=v_k. Zamknięty spacer zawierający każdą krawędź dokładnie raz (dokładniej: tyle razy, ile wynosi jej krotność) nazywamy obchodem Eulera, a spójny multigraf, dla którego istnieje obchód Eulera – grafem Eulera.

Ilustracja a b c d e f a b c d a-b-c-f-b-a-e -- spacer a-b-d-c-b-c-a – obchód Eulera a-b-c-b-f-a – spacer zamknięty

Tw. Eulera Tw (Euler, 1736). Spójny graf G jest grafem Eulera wgdy wszystkie stopnie wierzchołków są parzyste. Dowód :  oczywiste  Rozważmy najdłuższy spacer W w G zawierający każdą krawędź nie więcej niż raz. W musi być zamknięty (dlaczego?). Jeśli W nie jest obchodem Eulera, to istnieje krawędź e poza W, ale incydentna z W. Wtedy jednak W można wydłużyć – sprzeczność. 

Wniosek Lemat. Jeśli wszystkie stopnie wierzchołków w G są parzyste, to krawędzie w G można zorientować (skierować, ,,ostrzałkować”) tak, by do każdego wierzchołka wchodziło tyle samo strzałek co wychodziło. Dowód: W każdej składowej znajdźmy obchód Eulera i zorientujmy krawędzie wzdłuż niego.  Uwaga: Adaptacja pierwotnego dowodu tego lematu pozwala na indukcyjny dowód Tw. Eulera.

Zwiedzamy muzeum Zwiedzamy muzeum będące labiryntem korytarzy, w którym obrazy wiszą po obu stronach. Cel: przejść każdy korytarz 2 razy i wrócić do wyjścia.

PLAN MUZEUM a a e b c c b e d d Konkluzja: KAŻDE muzeum da się tak przejść!

Rysowanie bez odrywania Czy dany rysunek można narysować bez odrywania ołówka od papieru i bez powtarzania linii?

Trasa Eulera Spacer zawierający każdą krawędź dokładnie raz nazywamy trasą Eulera. Wniosek. Spójny graf G ma trasę Eulera wgdy wszystkie stopnie wierzchołków są parzyste, oprócz co najwyżej dwóch. Dowód:  Jeśli trzeba, dodajmy krawędź, by powstał graf Eulera. Z obchodu Eulera usuńmy dodaną krawędź. 

Więcej nieparzystych Wniosek. Jeśli multigraf G ma 2k nieparzystych stopni wierzchołków, to E(G) można pokryć przy pomocy k (krawędziowo rozłącznych) spacerów, w których żadna krawędź się nie powtarza. Dowód: Dodajmy do G k krawędzi łączących parami wierzchołki nieparzyste. Nowy multigraf jest grafem Eulera i ma obchód Eulera W. Usuwając z W dodane krawędzie, dzielimy go na k spacerów o żądanej własności. 

Problem Chińskiego Listonosza Obchodem listonosza nazywamy zamknięty spacer przechodzący przez każdą krawędź co najmniej raz. Problem (Guan 1960, Edmonds 1965): Znaleźć najkrótszy obchód listonosza w spójnym multigrafie.

Rozwiązanie Niech G ma 2k nieparzystych stopni. Niech H będzie najmniejszym (co do liczby krawędzi) podgrafem rozpiętym w G, który ma te same nieparzyste wierzchołki co G. Problem 1: Jak efektywnie wyznaczyć H ? (ćwiczenia)

Rozwiązanie – c.d. Dublując krawędzie H w G otrzymamy graf Eulera G+H. Obchód Eulera W w G+H wyznacza obchód listonosza w G. Problem 2: Wykazać, że W jest najkrótszym obchodem listonosza w G? (ćwiczenia)

A F E J B G H I C D

A F E J B G H I C D

Ilustracja

Zabawka Hamiltona Sir William Hamilton (1859): Przejść bez powtórzeń wszystkie wierzchołki dwunastościanu i wrócić do punktu wyjścia, poruszając się wzdłuż krawędzi.

Cykl Hamiltona Cyklem Hamiltona w grafie G nazywamy rozpięty podgraf grafu G, który jest cyklem. Graf posiadający cykl Hamiltona nazywamy hamiltonowskim lub Hamiltona. Ścieżką Hamiltona w grafie G nazywamy rozpięty podgraf grafu G, który jest ścieżką.

Euler vs. Hamilton Obchód (trasa) Eulera w grafie G jest cyklem (ścieżką) Hamiltona w grafie krawędziowym L(G). 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

Ale... Nie każdy graf jest grafem krawędziowym, np. K_{1,3}. Problem rozstrzygnięcia czy graf jest hamiltonowski jest NP-zupełny. Problemy rozstrzygnięcia czy graf jest eulerowski oraz czy graf jest grafem krawędziowym są w klasie P.

Warunek konieczny Fakt 1. Jeśli istnieje w G zbiór wierzchołków S taki, że G-S ma więcej niż |S| składowych spójności, to G nie jest hamiltonowski. Dowód: Jeśli usunąć z cyklu k wierzchołków, to rozpadnie się on na co najwyżej k składowych, więc to samo jest prawdą dla grafu hamiltonowskiego.

Wnioski 1. Graf Hamiltona musi być 2-spójny. 2. Dwudzielny graf Hamiltona musi mieć równy dwupodział, a więc musi mieć parzysta liczbę wierzchołków. NIE!!!

Inny warunek konieczny Fakt 2. Jeśli G jest hamiltonowski, to podgraf złożony z krawędzi incydentnych z wierzchołkami stopnia dwa w G musi być sumą ścieżek lub cyklem Hamiltona. NIE!!!

Tw. Diraca Jak duże δ(G) gwarantuje cykl Hamiltona? Tw.(Dirac 1952). Jeśli |V(G)|=n>2 i δ(G) ≥ n/2, to G jest hamiltonowski. Dowód: Przy powyższych założeniach G jest spójny. Rozważmy najdłuższą ścieżkę P w G. Jej końce, u i v, mają wszystkich sąsiadów w zbiorze V(P).

Dowód Tw. Diraca – c.d. Niech R będzie zbiorem wierzchołków położonych na P bezpośrednio ,,na prawo” od sąsiadów v. Precyzyjniej: u v w’ w

Dowód Tw. Diraca – dokończenie Zatem w G istnieje cykl C taki, że V(C)=V(P). Jeśli C nie jest cyklem Hamiltona, to na podstawie spójności grafu G, musi istnieć krawędź o dokładnie jednym końcu w V(C). To jednak oznacza, że w G jest ścieżka dłuższa niż P – sprzeczność. C

Tw. Ore Tw.(Ore 1960). Jeśli |V(G)|=n>2 i dla każdej pary niesąsiednich wierzchołków u i v, to G jest hamiltonowski. Dowód: Taki sam jak dowód Tw. Diraca.

Tw. Chvátala-Erdősa Jeśli κ(G)>k i |V(G)|>2k, to G ma cykl długości większej niż 2k (ćw.) Jeśli α(G)<k i |V(G)|>3k, to G ma cykl długości większej niż n/k (ćw.) Tw. (Chvátal, Erdős, 1972) Jeśli |V(G)|>2 i to G jest hamiltonowski.

Dowód Niech κ(G)=k. Niech C będzie najdłuższym cyklem. Przypuśćmy, że istnieje wierzchołek v poza C. Z Tw. Mengera, istnieje co najmniej min{k,|V(C)|} rozłącznych (z wyjątkiem v) V(C)-{v} ścieżek. (ćw.) Ich końce w V(C) nie mogą być sąsiednie na C. Zatem tych ścieżek jest co najmniej k ≤ |V(C)|/2. Następcy ich końców na cyklu (zgodnie z ruchem wskazówek zegara) tworzą wraz z v zbiór niezależny mocy co najmniej k+1 – sprzeczność.

Ilustracja u_1 P_1 w_1 v C u_2 P_2 w_2 Cykl w_1-w_2-...-u_1-P_1-v-P_2-u_2-...-w_1 jest dłuższy niż C.