ZESPÓŁ SZKÓŁ OGÓLNOKSZTAŁCĄCYCH

Slides:



Advertisements
Podobne prezentacje
Dane INFORMACYJNE Nazwa szkoły: Gimnazjum w Brzezinach ID grupy: 98/72
Advertisements

Zespół Szkół im. Ks. Jerzego Popiełuszki
Dane INFORMACYJNE Nazwa szkoły:
ZESPÓŁ SZKÓŁ OGÓLNOKSZTAŁCĄCYCH
Projekt „AS KOMPETENCJI’’
Dane INFORMACYJNE Nazwa szkoły:
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Dane INFORMACYJNE Nazwa szkoły:
Dane informacyjne Nazwa szkoły: Zespół Szkół Technicznych w Kole oraz Zespół Szkół Morskich im. Eugeniusza Kwiatkowskiego ID grupy: 97/78_MF_G1 oraz 97/80_MF_G1.
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
MATEMATYCZNO FIZYCZNA
Dane INFORMACYJNE (do uzupełnienia)
Dane INFORMACYJNE Nazwa szkoły: Zespół Szkół Gimnazjum i Liceum im. Michała Kosmowskiego w Trzemesznie. ID grupy: 97_59_MF_G1 Opiekun: Aurelia Tycka-
Dane INFORMACYJNE (do uzupełnienia)
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Dane INFORMACYJNE Nazwa szkoły:
Dane Informacyjne: Nazwa szkoły: ZESPÓŁ SZKÓŁ PONADGIMNAZJALNYCH NR 1 „ELEKTRYK” W NOWEJ SOLI ID grupy: 97/56_MF_G1 Kompetencja: MATEMATYKA I FIZYKA Temat.
Projekt ROZWÓJ PRZEZ KOMPETENCJE jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał
Projekt ROZWÓJ PRZEZ KOMPETENCJE jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał
Dane INFORMACYJNE Nazwa szkoły: Zespół Szkół nr2 Gimnazjum nr3 z Oddziałami Integracyjnymi w Hajnówce. ID grupy: 96/78_MP_G2 Opiekun: Lija Grosz. Kompetencja:
Dane INFORMACYJNE Nazwa szkoły:
Dane INFORMACYJNE Nazwa szkoły: Zespół Szkół w Lichnowach
DANE INFORMACYJNE Gimnazjum Nr 43 w Szczecinie ID grupy: 98/38_MF_G2
Dane INFORMACYJNE Nazwa szkoły: ZESPÓŁ SZKÓŁ w BACZYNIE ID grupy:
1.
„Zbiory, relacje, funkcje”
DANE INFORMACYJNE Nazwa szkoły: ZESPÓŁ SZKÓŁ PONADGIMNAZJALNYCH IM J. MARCIŃCA W KOŹMINIE WLKP. ID grupy: 97/93_MF_G1 Opiekun: MGR MARZENA KRAWCZYK Kompetencja:
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Dane INFORMACYJNE Gimnazjum im. Mieszka I w Cedyni ID grupy: 98_10_G1 Kompetencja: Matematyczno - fizyczna Temat projektowy: Ciekawa optyka Semestr/rok.
Natalia Pawłowska kl. II c Kinga Zawora kl. II b
Nazwa szkoły: Gimnazjum nr 58 im. Jana Nowaka Jeziorańskiego w Poznaniu ID grupy: 98/62_MF_G2 Opiekun Aneta Waszkowiak Kompetencja: matematyczno- fizyczna.
Dane INFORMACYJNE (do uzupełnienia)
Dane INFORMACYJNE Nazwa szkoły: Zespół Szkół Ogólnokształcących
Problemy rynku pracy..
Statystyczny Uczeń Naszej Szkoły
Nazwa szkoły: Zespół Szkół Ogólnokształcących w Świebodzinie ID grupy:97/76_p_G1 Opiekun: Dariusz Wojtala Kompetencja: Przedsiębiorczość Temat projektowy:
Dane INFORMACYJNE Nazwa szkoły:
Dane INFORMACYJNE Nazwa szkoły: Zespół Szkół Gastronomicznych
Dane INFORMACYJNE (do uzupełnienia)
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Dane INFORMACYJNE Nazwa szkoły: ZSPiG Krobia ID grupy: 98/77_mf_g1
Dane INFORMACYJNE (do uzupełnienia)
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Projekt ROZWÓJ PRZEZ KOMPETENCJE jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Dane INFORMACYJNE Nazwa szkoły:
Program operacyjny Kapitał Ludzki Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu.
DANE INFORMACYJNE Nazwa szkoły:
DANE INFORMACYJNE 97_10_MF_G1 i 97_93_MF_G1 Kompetencja:
1.
Dane INFORMACYJNE Nazwa szkoły:
Dane INFORMACYJNE Nazwa szkoły:
Dane INFORMACYJNE Nazwa szkoły: Zachodniopomorskie Centrum Edukacyjne
Dane INFORMACYJNE (do uzupełnienia)
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Dane INFORMACYJNE (do uzupełnienia)
Projekt ROZWÓJ PRZEZ KOMPETENCJE jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Zespół Szkół Ponadgimnazjalnych w Kleczewie ID grupy: 97_75_p_G2
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
Projekt „ROZWÓJ PRZEZ KOMPETENCJE” jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał.
Zapis prezentacji:

ZESPÓŁ SZKÓŁ OGÓLNOKSZTAŁCĄCYCH DANE INFORMACYJNE Nazwa szkoły: ID grupy: 97/84_MF_G1 Opiekun: MONIKA BUSZ Kompetencja: MATEMATYCZNO-FIZYCZNA Temat projektowy: PARADOKSY NIESKOŃCZONOŚCI Semestr/rok szkolny: PIĄTY 2011/2012 ZESPÓŁ SZKÓŁ OGÓLNOKSZTAŁCĄCYCH I ZAWODOWYCH W KROBI

NIESKOŃCZONOŚĆ Człowiek jest syntezą nieskończoności i skończoności, doczesności i wieczności, wolności i konieczności, jednym słowem, syntezą.

NIESKOŃCZONOŚĆ Nieskończoność (symbol: ∞) – byt nieograniczony (w sensie wielkości bądź ilości), który przyjęło się oznaczać za pomocą znaku nieskończoności, symbolem podobnym do przewróconej ósemki (lemniskata).

NIESKOŃCZONOŚĆ W matematyce słowem nieskończoność posługujemy się przede wszystkim w znaczeniu liczebności zbioru. W teorii mnogości definiujemy zbiór nieskończony jako ten, który jest równoliczny ze swoim podzbiorem właściwym, co jest równoważne temu, że dla każdego zbioru skończonego (to znaczy: który nie jest nieskończony) zawiera podzbiór z nim równoliczny. Oprócz tego podstawowego użycia, nieskończoność występuje w zestawieniach punkt w nieskończoności, nieskończenie maże otoczenie punktu, z reguły dla podkreślenia, że mamy do czynienia z sytuacją, w której konstrukcja omawianego obiektu wymagałaby nieskończenie wielu, w sensie liczebności, pewnych standardowych kroków. Jednakże, chociaż w matematyce wszystkie znaczenia słowa nieskończoność można sprowadzić do nieskończoności liczbowej, to pierwotne geometryczne intuicje, na przykład nieskończonej rozciągłości płaszczyzny, może nie mają liczbowych źródeł. Można jednak nadać im liczbowe uzasadnienia.

PARADOKSY Paradoks (gr. parádoksos – nieoczekiwany, nieprawdopodobny) – twierdzenie logiczne prowadzące do zaskakujących lub sprzecznych wniosków. Sprzeczność ta może być wynikiem błędów w sformułowaniu twierdzenia, przyjęcia błędnych założeń a może też być sprzecznością pozorną, sprzecznością z tzw. zdrowym rozsądkiem, np. paradoks hydrostatyczny, czy paradoks bliźniąt.

PARADOKSY

PARADOKSY ZENONA Z ELEI ACHILLES I ŻÓŁW Achilles potrafi biegać dwukrotnie szybciej od żółwia, na starcie pozwala mu oddalić się o pół dystansu. Startują w tym samym momencie. Kiedy Achilles dobiega do połowy dystansu żółw jest już dystansu. Gdy Achilles dobiegnie do dystansu, żółw znowu mu ucieknie pokonując Gdy Achilles dotrze w to miejsce, żółw ponownie oddali się o 1/16 dystansu, i tak w nieskończoność. Wniosek - Achilles nigdy nie przegoni żółwia, mimo ze biegnie od niego dwa razy szybciej.

ACHILLES I ŻÓŁW

PARADOKSY ZENONA Z ELEI HOTEL HILBERTA wyobraźmy sobie portiera w Grand Hotelu, w którym jest nieskończona liczba pokoi. Hotel jest pełny, nie ma wolnych miejsc. Przychodzi do hotelu kolejny klient chcący wynająć pokój. Okazuje się, ze sytuacja portiera nie jest bez wyjścia i nie musi odprawić klienta z kwitkiem. Portier wykonuje sprytny trik. Klienta z pokoju numer 1 przenosi do pokoju nr 2, tego z pokoju nr 2 do pokoju nr 3, ogólnie klienta z pokoju o numerze n portier przekwaterowuje do pokoju n + 1. W ten sposób każdy z dotychczasowych gości zostanie przekierowany, a kolejny klient otrzyma wolny juz pokój o numerze 1.

HOTEL HILBERTA

HOTEL HILBERTA

HOTEL HILBERTA

HOTEL HILBERTA

HOTEL HILBERTA

HOTEL HILBERTA

KRZYWA PEANO Niezależnie od siebie, Giuseppe Peano i David Hilbert, w latach 1890-91 rozpatrywali krzywe, które całkowicie wypełniałyby płaszczyznę dwuwymiarową, czyli przechodziłyby przez wszystkie punkty na tej płaszczyźnie. Najpierw opiszę Krzywą Peano. Cała krzywa mieści się w kwadracie, względem pierwotnej prostej, obróconym o 45°. To właśnie ten kwadrat prosta będzie całkowicie wypełniać. Konstrukcja krzywej jest widoczna na rysunku, więc dodatkowy opis jest zbędny. Kwadrat, w którym znajduje się krzywa zaznaczony jest na ciemny odcień szarego. Konstrukcja krzywej w pierwszym kroku zaznaczona jest grubszą czarną linią. W drugim kroku, pierwsza krzywa jest modyfikowana, każdy odcinek jest zamieniany na krzywą (taką jak w kroku pierwszym), w wyniku czego powstaje krzywa, składająca się jednocześnie z grubszych jak i cieńszych linii zaznaczonych na rysunku. Strzałki obrazują kolejność rysowania odcinków w pierwszym kroku. Obrazek w rogu obrazuje nam to w troszkę inny, łatwiejszy do zapamiętania sposób.

KRZYWA PEANO

NIESKOŃCZONOŚĆ Dopóki widać drogę w nieskończoność, dopóty ma ona sens i na konkretnym odcinku.

DZIĘKUJEMY ZA UWAGĘ