Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.

Slides:



Advertisements
Podobne prezentacje
Funkcje tworzące są wygodnym narzędziem przy badaniu zmiennych losowych o wartościach całkowitych nieujemnych. Funkcje tworzące pierwszy raz badał de.
Advertisements

Opracowała: Agnieszka Siry
Liczby pierwsze Liczbą pierwszą nazywamy każdą liczbę naturalną n większą od 1, której jedynymi dzielnikami są 1 oraz n. Początkowe liczby pierwsze.
Ciekawe Liczby Liczba – pojęcie abstrakcyjne, jedno z najczęściej używanych w matematyce. Pierwotnie liczby służyły do porównywania wielkości zbiorów przedmiotów.
Liczby Pierwsze - algorytmy
Dane INFORMACYJNE Nazwa szkoły:
ZESPÓŁ SZKÓŁ OGÓLNOKSZTAŁCĄCYCH
DANE INFORMACYJNE Nazwa szkoły: IX Liceum Ogólnokształcące w Poznaniu ID grupy: 97/44_mf_g1 Kompetencja: matematyczno-fizyczna Temat projektowy: Różne.
Różne własności liczb naturalnych
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
DANE INFORMACYJNE Nazwa szkoły: II Liceum Ogólnokształcące
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
MATEMATYCZNO FIZYCZNA
Dane INFORMACYJNE Nazwa szkoły: Zespół Szkół Gimnazjum i Liceum im. Michała Kosmowskiego w Trzemesznie. ID grupy: 97_59_MF_G1 Opiekun: Aurelia Tycka-
Dane Informacyjne: Nazwa szkoły: ZESPÓŁ SZKÓŁ PONADGIMNAZJALNYCH NR 1 „ELEKTRYK” W NOWEJ SOLI ID grupy: 97/56_MF_G1 Kompetencja: MATEMATYKA I FIZYKA Temat.
Dane INFORMACYJNE (do uzupełnienia)
Dane INFORMACYJNE Nazwa szkoły: Zespół Szkół w Lichnowach
1.
Dane INFORMACYJNE Nazwa szkoły: ZESPÓŁ SZKÓŁ w BACZYNIE ID grupy:
„Zbiory, relacje, funkcje”
Liczby pierwsze.
CIEKAWE LICZBY DAWID ŁUBIK.
Ciąg Fibonacciego i złota liczba
Tajemniczy ciąg Fibonacciego
ZŁOTA LICZBA Sebastian Nowakowski MiBM Gr. 3 Sem. VI.
Iluzje matematyczne.
Ciąg liczbowy Ciąg arytmetyczny Ciąg geometryczny
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
DANE INFORMACYJNE Nazwa szkoły: ZESPÓŁ SZKÓŁ PONADGIMNAZJALNYCH IM J. MARCIŃCA W KOŹMINIE WLKP. ID grupy: 97/93_MF_G1 Opiekun: MGR MARZENA KRAWCZYK Kompetencja:
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Dane INFORMACYJNE Nazwa szkoły:
Dane informacyjene Nazwa szkoły ID grupy Kompetencja Temat projektowy
Liczby Bliźniacze.
Ciekawe liczby Joanna Czarnecka r..
CIEKAWE LICZBY Rzeczy posiadają byt na tyle, na ile jest w nich liczba. Ludzie, którzy pracują nad formami materialnymi, wkładają liczbę w sztukę i w.
Dane INFORMACYJNE (do uzupełnienia)
Matematyka w obiektywie
Problemy rynku pracy..
Katarzyna Joanna Pawłowicz, kl. III a
Zespół Szkół Ogólnokształcących w Śremie
jako element analizy technicznej
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
Dane INFORMACYJNE Nazwa szkoły:
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Kombinatoryka w rachunku prawdopodobieństwa.
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Dane INFORMACYJNE Nazwa szkoły:
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
Nazwa szkoły: Zespół Szkół w Lipinkach Łużyckich ID grup: 98/25 MF G1 Kompetencja: matematyczno-fizyczna Temat projektowy: Historia liczby Semestr/rok.
DANE INFORMACYJNE Nazwa szkoły:
DANE INFORMACYJNE 97_10_MF_G1 i 97_93_MF_G1 Kompetencja:
Dane INFORMACYJNE Nazwa szkoły: ZESPÓŁ SZKÓŁ w BACZYNIE ID grupy:
Dane INFORMACYJNE (do uzupełnienia)
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Dane INFORMACYJNE (do uzupełnienia)
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
CENTRUM KSZTAŁCENIA ROLNICZEGO
Ciagi Fibonacciego O Fibonaccim Ciągi Fibonacciego
Matematyka jest wszędzie
Prezentację opracowała: Iwona Kowalik
Leonardo z Pizy inaczej Leonardo Fibonacci
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Projekt „ROZWÓJ PRZEZ KOMPETENCJE” jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał.
CIĄG FIBONACCIEGO Adrian Wójcik Kamil Bartosz Kl. 2e LO im. St. Kostki Potockiego.
Złoty podział Agnieszka Kresa.
Liczby pierwsze: szukanie, rozmieszczenie, zastosowanie, ciekawostki. Liczby pierwsze: szukanie, rozmieszczenie, zastosowanie, ciekawostki. Kinga Cichoń.
Zapis prezentacji:

Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki CZŁOWIEK – NAJLEPSZA INWESTYCJA Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie

Leopold Kronecker

LICZBY NATURALNE Zbiór liczb naturalnych {0,1,2,3, …} oznaczamy przez N. Liczb naturalnych jest nieskończenie wiele. Najmniejszą liczbą naturalną jest 0. Nie ma liczby największej.

Wyrazy ciągu Fibonacciego to: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, Pierwszy wyraz jest równy 0, drugi jest równy 1, każdy następny jest sumą dwóch poprzednich. Ciąg został podany w 1202 roku przez Leonarda z Pizy zwanego Fibonaccim. Nazywanie tego ciągu jako ciąg Fibonacciego spopularyzował w XIX Edward Lucas.

Matematycy odkryli, że ciąg Fibonacciego można odnaleźć w przyrodzie. Opisuje liczbę pędów rośliny jednostajnie przyrastającej w latach. W słoneczniku możemy zaobserwować dwa układy linii spiralnych, wychodzących ze środka. Liczba linii rozwijających się zgodnie z ruchem wskazówek zegara wynosi 55 i tylko 34 skręconych w przeciwną stronę. Takie same spirale można zaobserwować na wielu innych roślinach, takich jak kalafior, ananas czy szyszki. Liczby spiral występujących w tych roślinach są kolejnymi liczbami Fibonacciego.

LICZBY BLIŹNIACZE Greccy matematycy ze szkoły pitagorejskej cenili sobie harmonię wśród liczb, dlatego interesowali się liczbami bliźniaczymi, czyli takimi parami kolejnych liczb pierwszych, których różnica jest równa 2. Na przykład: (3, 5), (5, 7), (11, 13), (17, 19), (29, 31) W 1949 r. P.A. Clement następująco scharakteryzował liczby pierwsze bliźniacze: niech n 2. Liczby n i n + 2 tworzą parę liczb pierwszych bliźniaczych wtedy i tylko wtedy, gdy 4((n - 1)! + 1) + n 0 (mod n(n + 2)).

LICZBY CZWORACZE Istnieją także czwórki kolejnych liczb pierwszych, dające dwie pary liczb bliźniaczych, na przykład 11, 13, 17, 19 lub 191, 193, 197, 199. Jeżeli taką czwórkę tworzą liczby pierwsze p, p+2, p+6 i p+8, to pary takie nazywamy liczbami czworaczymi.

LICZBA DOSKONAŁA Liczba doskonała, liczba naturalna n, będąca sumą wszystkich swoich podzielników różnych od niej samej, np. 28= Inne znane liczby doskonałe to np.: 6, 496, Parzyste liczby doskonałe mają postać: n=2 (k-1) (2 k -1), o ile 2 k -1 jest liczbą pierwszą (k - pewna liczba naturalna). Twierdzenie powyższe udowodnił Euklides.

LICZBY MERSENNEA Liczbami Mersennea nazywamy liczby postaci 2 p - 1, gdzie p jest liczbą pierwszą. Liczby tej postaci oznaczamy obecnie M[p]. Okazało się, że cztery pierwsze liczby Mersenne'a: M[2] = = 3, M[3] = = 7, M[5] = = 31, M[7] = = 127, są liczbami pierwszymi, ale następna liczba: M[11] = = 2047 nie jest pierwsza, gdyż rozkłada się na czynniki 23 i 89. Największą liczbę pierwszą jaką wyznaczyły do tej pory najpotężniejsze na świecie komputery jest Ma ona cyfr.

BIBLIOGRAFIA podstawowki/liczby-elementy-algebry/liczby-naturalne ematyczna_1/Wyk%C5%82ad_1:_Zbiory_liczbowe