ZESPÓŁ SZKÓŁ OGÓLNOKSZTAŁCĄCYCH

Slides:



Advertisements
Podobne prezentacje
Dane informacyjne Nazwa szkoły: Zespół Szkół Technicznych w Kole
Advertisements

Dane INFORMACYJNE Nazwa szkoły:
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Dane INFORMACYJNE Nazwa szkoły:
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
ZESPÓŁ SZKÓŁ OGÓLNOKSZTAŁCĄCYCH
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
MATEMATYCZNO FIZYCZNA
Dane INFORMACYJNE (do uzupełnienia)
Dane INFORMACYJNE Nazwa szkoły: Zespół Szkół Gimnazjum i Liceum im. Michała Kosmowskiego w Trzemesznie. ID grupy: 97_59_MF_G1 Opiekun: Aurelia Tycka-
Dane INFORMACYJNE Nazwa szkoły: Międzyszkolna Grupa Projektowa
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Dane INFORMACYJNE Nazwa szkoły:
Dane Informacyjne: Nazwa szkoły: ZESPÓŁ SZKÓŁ PONADGIMNAZJALNYCH NR 1 „ELEKTRYK” W NOWEJ SOLI ID grupy: 97/56_MF_G1 Kompetencja: MATEMATYKA I FIZYKA Temat.
Projekt ROZWÓJ PRZEZ KOMPETENCJE jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał
Projekt ROZWÓJ PRZEZ KOMPETENCJE jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał
Dane INFORMACYJNE Nazwa szkoły: Zespół Szkół nr2 Gimnazjum nr3 z Oddziałami Integracyjnymi w Hajnówce. ID grupy: 96/78_MP_G2 Opiekun: Lija Grosz. Kompetencja:
Dane INFORMACYJNE Nazwa szkoły: Zespół Szkół w Lichnowach
Elementy kombinatoryki
DANE INFORMACYJNE Gimnazjum Nr 43 w Szczecinie ID grupy: 98/38_MF_G2
Dane INFORMACYJNE Nazwa szkoły: ZESPÓŁ SZKÓŁ w BACZYNIE ID grupy:
1.
„Zbiory, relacje, funkcje”
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
mgr Anna Walczyszewska
Dane INFORMACYJNE Nazwa szkoły: Zespół Szkół budowlanych im. Kazimierza Wielkiego w Szczecinie ID grupy: 97/26_mf_g1 Kompetencja: Matematyczno - fizyczna.
Dane INFORMACYJNE Nazwa szkoły: Gimnazjum w Polanowie im. Noblistów Polskich ID grupy: 98/49_MF_G1 Kompetencja: Fizyka i matematyka Temat.
DANE INFORMACYJNE Nazwa szkoły: ZESPÓŁ SZKÓŁ PONADGIMNAZJALNYCH IM J. MARCIŃCA W KOŹMINIE WLKP. ID grupy: 97/93_MF_G1 Opiekun: MGR MARZENA KRAWCZYK Kompetencja:
KOMBINATORYKA Zaczynamy……
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Dane INFORMACYJNE Nazwa szkoły:
Dane INFORMACYJNE Nazwa szkoły: Zespół Szkół Ogólnokształcących
Problemy rynku pracy..
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Statystyczny Uczeń Naszej Szkoły
Dane INFORMACYJNE (do uzupełnienia)
Dane INFORMACYJNE (do uzupełnienia)
Dane INFORMACYJNE (do uzupełnienia)
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Kombinatoryka w rachunku prawdopodobieństwa.
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Dane INFORMACYJNE Nazwa szkoły:
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Dane INFORMACYJNE Nazwa szkoły: ZESPÓŁ SZKÓŁ PONADGIMNAZJALNYCH
Dane INFORMACYJNE Nazwa szkoły:
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
Program operacyjny Kapitał Ludzki Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu.
DANE INFORMACYJNE Nazwa szkoły:
DANE INFORMACYJNE 97_10_MF_G1 i 97_93_MF_G1 Kompetencja:
1.
Dane INFORMACYJNE Nazwa szkoły: ZESPÓŁ SZKÓŁ w BACZYNIE ID grupy:
Dane INFORMACYJNE Nazwa szkoły:
Dane INFORMACYJNE (do uzupełnienia)
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
Dane INFORMACYJNE (do uzupełnienia)
Projekt ROZWÓJ PRZEZ KOMPETENCJE jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał
Projekt ROZWÓJ PRZEZ KOMPETENCJE jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
DOŚWIADCZENIA LOSOWE.
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
Dane Informacyjne Nazwa szkoły:
ELEMENTY KOMBINATORYKI
HARALD KAJZER ZST nr 2 im. Mariana Batko
Projekt „ROZWÓJ PRZEZ KOMPETENCJE” jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał.
Projekt „AS KOMPETENCJI” jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Zapis prezentacji:

ZESPÓŁ SZKÓŁ OGÓLNOKSZTAŁCĄCYCH DANE INFORMACYJNE Nazwa szkoły: ID grupy: 97/84_MF_G1 Opiekun: MONIKA BUSZ Kompetencja: MATEMATYCZNO-FIZYCZNA Temat projektowy: INTUICJA W PRAWDOPODOBIEŃSTWIE Semestr/rok szkolny: TRZECI 2010/2011 ZESPÓŁ SZKÓŁ OGÓLNOKSZTAŁCĄCYCH I ZAWODOWYCH W KROBI

Podstawowe pojęcia rachunku prawdopodobieństwa Zdarzenie elementarne jest to pojęcie pierwotne, czyli takie którego w matematyce się nie definiuje. Zdarzenia kojarzymy z możliwymi wynikami danego doświadczenia. Oznaczenie:

Przykłady: Określ zdarzenie elementarne dla wymienionych poniżej doświadczeń losowych Doświadczenie losowe rzut raz monetą rzut raz dwiema monetami rzut raz kostką sześcienną do gry rzut raz dwiema kostkami rzut raz kostką i monetą

Podstawowe pojęcia rachunku prawdopodobieństwa Przestrzeń zdarzeń elementarnych (przestrzeń probabilistyczna) jest to zbiór wszystkich zdarzeń elementarnych (zakładamy, że jest on skończony) Oznaczenie: liczba elementów danej przestrzeni probabilistycznej Oznaczenie: Moc przestrzeni zdarzeń elementarnych

Podstawowe pojęcia rachunku prawdopodobieństwa Zdarzenie niemożliwe Oznaczenie: Zdarzenie pewne Oznaczenie: Zdarzenie przeciwne do A Oznaczenie: Zdarzenia wykluczające to zdarzenia, dla których

Przykłady: Dla podanych doświadczeń losowych opisz ich przestrzeń zdarzeń elementarnych (przestrzeń probabilistyczną) Doświadczenie losowe Przestrzeń zdarzeń elementarnych rzut raz monetą rzut raz dwiema monetami rzut raz kostką sześcienną do gry rzut raz dwiema kostkami rzut raz kostką i monetą

Obliczanie mocy zbiorów Kombinatoryka – to dział matematyki zajmujący się badaniem liczebności różnych zbiorów skończonych Podstawowe pojęcia kombinatoryki: Permutacje Wariacje Kombinacje PODSUMOWANIE ZADANIA

Ćwiczenie 1 Wypiszcie w parach wszystkie możliwe ustawienia liter A,B,C, a następnie zróbcie to samo dla liter A,B,C,D. Zastanówcie się ile będzie możliwości dla zbioru n-elementowego? Odpowiedź: Dla A,B,C możliwości jest 3x2x1=6; Dla A,B,C,D możliwości jest 4x3x2x1=24 Dla zbioru n-elementowego będzie n x (n-1) x (n-2) x ... x 2 x 1=n! Permutacją bez powtórzeń zbioru n-elementowego nazywamy każdy n-elementowy ciąg utworzony z wszystkich elementów tego zbioru Pn=n! Twierdzenie o mnożeniu Jeżeli pewien wybór zależy od skończenie wielu decyzji; przy czym podejmując pierwszą mamy n1 możliwości, drugą n2, zaś k-tą nk możliwości, to wyboru można dokonać na :

Ćwiczenie 2 Jeżeli k1+k2+k3+...+ks=n to Pn(k1,k2,k3,...,ks)= Wypiszcie w parach wszystkie możliwe ustawienia liter słowa MAMA. Czy można ich ilość wyliczyć z poprzedniego wzoru? Odpowiedź: MMAA, MAMA, AMMA, AAMM, MAAM, AMAM Permutacją z powtórzeniami zbioru n-elementowego nazywamy każdy n-elementowy ciąg utworzony z zbioru n-elementowego, przy czym niektóre elementy zbioru powtarzają się odpowiednio razy. Jeżeli k1+k2+k3+...+ks=n to Pn(k1,k2,k3,...,ks)=

Ćwiczenie 1 Ze zbioru cyfr 1, 2, 3, 4, 5 wybierz najpierw trzy cyfry, a następnie ułóż z nich liczbę trzycyfrową o różnych cyfrach. Ile będzie liczb trzycyfrowych utworzonych z różnych cyfr tego zbioru? Odpowiedź: Liczby wybieramy kolejno: pierwszą na 5, druga na 4 i trzecią na 3 sposoby. Zatem liczb trzycyfrowych będzie 60. Zauważmy: Ile będzie ciągów k wyrazowych o różnych elementach spośród n różnych elementów? Wariacją k-wyrazową bez powtórzeń zbioru n-elementowego nazywamy każdy k-wyrazowy ciąg o różnych wyrazach wybranych ze zbioru n-elementowego.

Ćwiczenie 2 Ze zbioru cyfr 1, 2, 3, 4, 5 wybierz trzy cyfry, przy czym każdą cyfrę można wybrać wielokrotnie, a następnie ułóż z nich liczbę trzycyfrową. Ile będzie liczb trzycyfrowych utworzonych z cyfr tego zbioru? Odpowiedź: Każdą cyfrę można wybrać na 5 sposobów, zatem liczb trzycyfrowych będzie 5x5x5=125 Ile będzie ciągów k wyrazowych o powtarzających się elementach spośród n różnych elementów? Wariacją k-wyrazową z powtórzeniami zbioru n-elementowego nazywamy każdy k-wyrazowy ciąg niekoniecznie o różnych elementach wybranych ze zbioru n-elementowego.

Ćwiczenie Dany jest zbiór A={a,b,c,d}. Ile będzie podzbiorów zeroelementowych, jednoelementowych, dwuelementowych, trójelementowych, czteroele- mentowych utworzonych z elementów zbioru A? Odpowiedź: Liczba elementów podzbioru 1 2 3 4 Ilość podzbiorów 6 Ile będzie podzbiorów k elementowych zbioru n elementowego? Kombinacją k elementów spośród n elementów nazywamy każdy k-elementowy podzbiór utworzony z elementów zbioru n-elementowego. Odpowiedź: Ile będzie podzbiorów zbioru n elementowego?

Przyporządkuj podanym poniżej wzorom odpowiednie pojęcia:

Zadanie 1 W kwiaciarni jest 7 gatunków ciętych kwiatów. Ile bukietów składających się z trzech różnych gatunków kwiatów możesz zamówić w_tej kwiaciarni? Odpowiedź: Zadanie 2 Do windy 8 piętrowego budynku wsiadło 3 pasażerów. Na ile sposobów mogą oni opuścić windę? Odpowiedź: Zadanie 3 Na ile sposobów możemy wybrać w totolotku 6 liczb z 49? Odpowiedź: Zadanie 4 Ile słów (mających sens lub nie) można utworzyć z wszystkich liter słowa matematyka? Odpowiedź: Zadanie 5 Na ile sposobów można z uczniów klasy 30 osobowej wybrać samorząd (przewodniczącego, zastępcę przewodniczącego i skarbnika)? Odpowiedź: