Instrumenty o charakterze własnościowym - akcje

Slides:



Advertisements
Podobne prezentacje
Analiza współzależności zjawisk
Advertisements

Równanie różniczkowe zupełne i równania do niego sprowadzalne
CIĄGI.
Zmienne losowe i ich rozkłady
dr Przemysław Garsztka
Modele dwumianowe dr Mirosław Budzicki.
BUDOWA MODELU EKONOMETRYCZNEGO
Badania operacyjne. Wykład 2
Kontrakty Terminowe Futures
Modelowanie lokowania aktywów
Dr inż. Bożena Mielczarek
OPCJE.
OPCJE.
Instrumenty o charakterze własnościowym - akcje
Model ciągły wyceny opcji Blacka – Scholesa - Mertona
Analiza portfeli dwu- oraz trzy-akcyjnych
Portfel wielu akcji. Model Sharpe’a
Statystyczne parametry akcji
Współczynnik beta Modele jedno-, wieloczynnikowe Model jednowskaźnikowy Sharpe’a Linia papierów wartościowych.
Statystyczne parametry akcji
Instrumenty o charakterze własnościowym Akcje. Literatura Jajuga K., Jajuga T. Inwestycje Jajuga K., Jajuga T. Inwestycje Luenberger D.G. Teoria inwestycji.
Granica efektywna zbioru możliwości inwestycyjnych Linia rynku kapitałowego Linia papierów wartościowych.
Granica efektywna zbioru możliwości inwestycyjnych Linia rynku kapitałowego Linia papierów wartościowych.
Instrumenty o charakterze własnościowym
Instrumenty finansowe
Ekonometria finansowa
Finanse behawioralne Finanse
Statystyka w doświadczalnictwie
Olimpia Markiewicz Dominika Milczarek-Andrzejewska AKTYWA RYZYKOWNE
Analiza korelacji.
Wykład 3 Wzór Bayesa, cd.: Wpływ rozkładu a priori.
Ubezpieczanie portfela z wykorzystaniem zmodyfikowanej strategii zabezpieczającej delta Tomasz Węgrzyn Katedra Matematyki Stosowanej Akademia Ekonomiczna.
Prognozowanie na podstawie modelu ekonometrycznego
Metody Symulacyjne w Telekomunikacji (MEST) Wykład 6/7: Analiza statystyczna wyników symulacyjnych  Dr inż. Halina Tarasiuk
Model CAPM W celu prawidłowego wyjaśnienia zjawisk zachodzących na rynku kapitałowym, należy uwzględnić wzajemne oddziaływania na siebie inwestorów. W.
Rozkłady wywodzące się z rozkładu normalnego standardowego
Modelowanie lokowania aktywów
Elementy Rachunku Prawdopodobieństwa i Statystyki
Dr inż. Bożena Mielczarek
Modelowanie lokowania aktywów
Plan zajęć: Czynniki kształtujące wartość firmy Podstawowe pojęcia
FUNKCJE Opracował: Karol Kara.
Określenie wartości (wycena) papierów wartościowych
Analiza portfeli dwu- oraz trzy-akcyjnych
OPCJE.
Modele zmienności aktywów
Instrumenty o charakterze własnościowym Akcje. Akcje.
OPCJE Ograniczenia na cenę opcji
Granica efektywna zbioru możliwości inwestycyjnych Linia rynku kapitałowego Linia papierów wartościowych.
Modele zmienności aktywów Model multiplikatywny Parametry siatki dwumianowej.
Akcje Instrumenty o charakterze własnościowym. Instrumenty o charakterze własnościowym Akcje - najważniejszy element rynku kapitałowego. Akcja jest papierem.
Portfel efektywny Granica efektywna zbioru możliwości inwestycyjnych Linia rynku kapitałowego Regresja liniowa.
Kontrakty Kontrakty futures Ceny futures, ceny kasowe, konwergencja Wykresy S t, F t, f t Pojęcie bazy Ryzyko bazy w strategii zabezpieczającej Badanie.
INSTRUMENTY POCHODNE OPCJE.
Akcje na tle innych instrumentów finansowych
Model ciągły wyceny opcji Blacka – Scholesa - Mertona
MODELOWANIE ZMIENNOŚCI CEN AKCJI
Analiza portfeli dwu- oraz trzy-akcyjnych
Statystyczne parametry akcji Średnie Miary rozproszenia Miary współzależności.
H. MARKOWITZ I W. SHARPE ANALIZA PORTFELOWA I RYNKI FINANSOWE W TEORII I PRAKTYCE dr Tomasz Uryszek I NSTYTUT F INANSÓW W YDZIAŁ E KONOMICZNO -S OCJOLOGICZNY.
Analiza portfeli dwu- oraz trzy-akcyjnych. Portfel dwóch akcji bez możliwości krótkiej sprzedaży W - wartość portfela   W = a P 1 + b P 2   P 1 -
Podstawy analizy portfelowej. Teoria portfela Podstawa podejmowania decyzji inwestycyjnych w warunkach niepewności. Decyzje podejmowane są ze względu.
Modele rynku kapitałowego
Wprowadzenie do inwestycji. Inwestycja Inwestycja – zaangażowanie określonej kwoty kapitału na pewien okres czasu w celu osiągnięcia w przyszłości przychodu.
Podstawy analizy portfelowej
STATYSTYKA – kurs podstawowy wykład 8 dr Dorota Węziak-Białowolska Instytut Statystyki i Demografii.
Modele rynku kapitałowego 1. Teoria optymalnego portfela inwestycyjnego Markowitza ma charakter modelu normatywnego tzn. formułuje zasady jakimi powinien.
Modele rynku kapitałowego
Wprowadzenie do inwestycji
Jednorównaniowy model regresji liniowej
Zapis prezentacji:

Instrumenty o charakterze własnościowym - akcje Model multiplikatywny Drzewo dwumianowe Parametry portfela akcji Zbiór możliwości inwestycyjnych Relacja Markowitza

Model addytywny. Przykłady symulacji

Model addytywny (przypadek a=1) Model addytywny (przypadek a=1). Zmienne losowe u(k) o rozkładzie dwupunktowym S(k+1) = S(k) + u (k) u(k) mają rozkład dwupunktowy, k=0,1,2,...tzn. u(k) = σ lub u(k) = - σ, ( σ > 0 ) z jednakowymi prawdopodobieństwami S(n) = S(0) + u (0) + u (1) +…+ u (n-1) Sn= u (0) + u (1) +…+ u (n-1) S(n) = S(0) + Sn Sn wyraża zmianę ceny po n etapach Wtedy: E[u (i)] = 0 Var [u (i)] = 0,5(σ-0)2 + 0,5(-σ-0)2 = σ2 E[Sn]= 0 Var Sn = Ʃni=1 Var [u (i)] = n σ2 Wzór na wariancję wynika z niezależności ciągu zmiennych losowych (u(i)). Z elementarnych własności wartości oczekiwanej i wariancji otrzymujemy E[S(n)]= S(0) Var S(n) = n σ2 Oznaczając przez σn odchylenie standardowe zmiennej Sn, mamy σn = σ n

Model addytywny. Uwagi Mimo swej prostoty i łatwości stosowania model addytywny nie nadaje się do stosowania go w rzeczywistości. Zmienne u(k) mogą przyjmować wartości ujemne, co oznacza, że model dopuszcza ujemne wartości cen akcji, co jest niemożliwe. Model ten nadaje się do analizy w krótkich okresach i stał się podstawą do zbudowania wielu innych modeli.

Model multiplikatywny Rozważmy model zmienności cen aktywów w którym „nowa” cena powstaje ze „starej” przez pomnożenie przez pewien losowy czynnik.   S(k+1) = u(k)S(k) dla k = 0, 1, ..., n – 1. Zakładamy, że dana jest cena początkowa S(0) oraz że zmienne losowe u(k), k = 0, 1,... ,n - 1, są dodatnie, mają jednakowe wartości oczekiwane oraz jednakowe wariancje.

Model multiplikatywny Logarytmując (3) stronami: ln S(k+l) = ln S(k) + ln u(k) dla k = 1, 2,..., n - 1. Uwaga. Uzyskana postać jest jedną z form modelu addytywnego - wartości ln S(k) są modelowane addytywnie ze stałą a=1 Oznaczmy w(k) = ln u(k) Losowe fluktuacje są wyrażone w formie logarytmu naturalnego z u(k). Załóżmy dalej, że ciąg {w(k)} jest ciągiem niezależnych zmiennych losowych o jednakowych rozkładach. Niech wartość oczekiwana każdej z nich wynosi μ zaś wariancja σ2.

Model multiplikatywny Korzystając z modelu (3) cena aktywa w chwili k dana jest wzorem S(k) = u(k-1)u(k-2)…u(0)S(0). Po zlogarytmowaniu obu stron

Model multiplikatywny Jeśli wszystkie zmienne w(i) mają tę samą wartość oczekiwaną μ i wariancję σ2 oraz są niezależne, to korzystając z własności wartości oczekiwanej i wariancji sumy niezależnych zmiennych losowych możemy zapisać: E [ln S(k)] = lnS(0) + μk Var [lnS(k)] = k σ2. Łatwo zauważyć, że zarówno wartość oczekiwana jak i wariancja rosną proporcjonalne do k.

Model multiplikatywny, dwumianowy Zakładamy, że w każdym okresie cena akcji może obniżyć się lub wzrosnąć, zawsze w tej samej proporcji, czyli przy czym pierwsza z tych wartości jest przyjmowana z prawdopodobieństwem p a druga z (1-p)

Drzewo cen w modelu multiplikatywnym, dwumianowym (4 etapy, S – cena początkowa)

Ceny końcowe w modelu multiplikatywnym dwumianowym, n-etapowym Ze wzoru (3) wynika, że możliwe ceny końcowe muszą mieć postać S u k d n-k, gdzie k = 0,1,…,n. Na drzewie cenowym istnieje różnych dróg prowadzących do węzła identyfikowanego z ceną Sukdn-k , gdyż każda droga jest jednoznacznie scharakteryzowana przez n-wyrazowy ciąg (u,u,d,u,…,d,u), zawierający k liter u oraz (n-k) liter d.

Ceny końcowe w modelu multiplikatywnym dwumianowym, n-etapowym Prawdopodobieństwo każdej takiej drogi – jako koniunkcji zdarzeń niezależnych - wynosi pk (1-p)n-k Zatem prawdopodobieństwo ceny końcowej Sukdn-k wynosi

Przykład modelu multiplikatywnego, dwumianowego

Drzewo cen akcji w modelu multiplikatywnym, dwumianowym (10 etapów)

Ceny akcji w modelu multiplikatywnym, dwumianowym (10 etapów)

Ceny końcowe akcji w modelu 10-etapowym oraz prawdopodobieństwo ich uzyskania

Model dwumianowy Symulacja

Model dwumianowy. Symulacja ceny dla 304 etapów Model dwumianowy. Symulacja ceny dla 304 etapów. Różne prawdopodobieństwa wzrostu i spadku

Oczekiwana wartość ceny w (n+1)- szym kroku S0=100 (cena początkowa) Sn - oczekiwana wartość ceny po n – tym krokach Sn+1= (1,1 Sn ) • 0,6 + (0,9 Sn) • 0,4 = = 1,02 Sn Ciąg (Sn) jest ciągiem geometrycznym o ilorazie 1,02

Model dwumianowy. Symulacja ceny

Model dwumianowy. Rozkład prawdopodobieństwa ceny końcowej dla 304 etapów

Stopa zwrotu portfela Oczekiwana stopa zwrotu portfela RA – stopa zwrotu z akcji A RB – stopa zwrotu z akcji B RP – stopa zwrotu z portfela Traktujemy powyższe stopy jako zmienne losowe RP = α RA + β RB RP jest zmienną losową, będącą kombinacją liniową zmiennych losowych RA , RB E(RA) – oczekiwana stopa zwrotu z akcji A E(RB) – oczekiwana stopa zwrotu z akcji B E(RP) – oczekiwana stopa zwrotu z Portfela E(RP) = α E(RA) + β E(RB)

Wariancja, odchylenie std. portfela dwóch akcji Var RP = α2Var RA + β2 Var RB + 2 α β• • Cov( RA , RB) Var RP – wariancja portfela Cov( RA , RB ) – kowariancja stóp zwrotu akcji A, B σP = √ Var RP σP - odchylenie standardowe portfela

Zbiór możliwości inwestycyjnych portfela (opportunity set) Zbiór wszystkich punktów w układzie współrzędnych ryzyko zysk : [ σP , E(RP) ] które można uzyskać zmieniając udziały poszczególnych akcji w portfelu

Zbiór możliwości inwestycyjnych portfela dwóch akcji (bez krótkiej sprzedaży)   akcja A akcja B Średnia stopa zwrotu 14,25% 62,72% Odchylenie standard. 25,25% 37,99%

Zbiór możliwości inwestycyjnych dla portfeli dwóch akcji A(10%,10%), B(20%,30%) przy różnych współczynnikach korelacji (żółty- Cor(A,B)=1, różowy - Cor(A,B)= -1)

Zbiór możliwości inwestycyjnych dla portfela dwóch akcji przy możliwości krótkiej sprzedaży Stopa zwrotu akcji A –16%, B - 12%

Zbiór możliwości inwestycyjnych dla portfela dwóch akcji, tworzonych z akcji 3 spółek

Zbiór możliwości inwestycyjnych dla portfela trzech akcji Portfele dwuakcyjne (linie ciągłe) portfele 3 akcji (kol. błękitny)

Zbiór możliwości inwestycyjnych dla portfela trzech akcji Krótka sprzedaż (kolor różowy)

Przykłady zagadnień optymalizacyjnych Ustalenie składu portfela charakteryzującego się minimalną wariancją minimalną wariancją, przy ustalonej oczekiwanej stopie zwrotu maksymalną oczekiwana stopą zwrotu, przy ustalonym poziomie ryzyka maksymalnym ilorazem oczekiwanej stopy zwrotu do ryzyka maksymalnym ilorazem oczekiwanej stopy zwrotu do ryzyka, przy uwzględnieniu stopy wolnej od ryzyka

Portfel efektywny Portfel efektywny to taki portfel że: Nie istnieje portfel o tej samej stopie zysku i mniejszym ryzyku Nie istnieje portfel o tym samym ryzyku i większej stopie zysku Portfele efektywne stanowią część brzegu zbioru wszystkich możliwości inwestycyjnych

Relacja Markowitza dla portfeli Portfelowi przyporządkowana jest para : odchyl. std. stopy zwrotu, wartość oczekiwana stopy zwrotu Dla dwóch par (σ1 , R1) , (σ2 , R2) zdefiniujemy relację oznaczoną symbolem „«” (σ1 , R1) « (σ2 , R2) <=> ( σ2 ≤ σ1 i R1 ≤ R2 ) Mówimy, że portfel któremu odpowiada druga para jest lepszy w sensie relacji Markowitza

Granica efektywna (zbiór efektywny) (efficient frontier) Odcinek krzywej odpowiadający portfelom, dla których nie można wskazać różnych od nich portfeli lepszych w sensie relacji Markowitza nazywa się granicą efektywną zbioru wszystkich możliwości inwestycyjnych (bądź zbiorem efektywnym) Punkt będący elementem granicy efektywnej nazywamy portfelem efektywnym

Portfel optymalny. Portfel rynkowy Portfel optymalny to portfel o maksymalnym zysku względnym przypadającym na jednostkę ryzyka ( czyli o maksymalnym stosunku oczekiwanej stopy zwrotu do odchylenia std. stopy zwrotu) Portfel rynkowy (σM , RM), to portfel o maksymalnym stosunku oczekiwanego zysku ponad stopę wolną od ryzyka do odchylenia std., czyli maksimum (ERP - RF)/σP Gdzie RF – stopa stała, wolna od ryzyka

Portfel minimalnego ryzyka Portfel minimalnego ryzyka to portfel charakteryzujący się najmniejszą wartością odchylenia standardowego stopy zwrotu portfela (czyli także wariancji stopy zwrotu )

Portfel optymalny. Portfel rynkowy Portfel minimalnego ryzyka

Portfel mieszany: rynkowy ze składnikami pozbawionymi ryzyka (risk free assets) Nowy portfel ma udział α obligacji o stałej stopie zwrotu RF i zerowym ryzyku oraz udział β akcji o stopie zwrotu RM i ryzyku σM Stopa zwr. portf. miesz.: RP = α RF + β RM gdzie α + β = 1, α, β > 0. ERP = α RF + β ERM . , Wtedy Var RP = Var (β RM) = β 2 Var (RM ) czyli σP = β σM wyliczając stąd β i podstawiając do wzoru na ERP , otrzymujemy ERP = (1- σP/σM ) RF + σP/σM • ERM czyli ERP = RF + σP(ERM - RF )/σM Otrzymaliśmy liniową zależność między oczekiwana stopą zwrotu a odchyleniem standardowym dla portfela mieszanego

Portfel mieszany bez możliwości krótkiej sprzedaży (punkty fioletowego odcinka) Stopa wolna od ryzyka – 9%, portfel rynkowy (18,56%, 15,00%)

Analiza portfelowa Badanie parametrów portfelowych, określanie kryteriów doboru akcji, optymalizacja portfela H. Markowitz, „Portfolio selection” 1952 J. Tobin – „Liquidity preference as behavior towards risk” 1958 F. Modigliani, M. Miller „The cost of capital, corporation finance and the theory of investment” 1958 W. Sharpe „Capital asset pricing model” 1964 J. Lintner „Security prices, risk and maximal gains from diversifications” 1965

Literatura Komar Z. „Sztuka spekulacji” Jajuga K., Jajuga T. „Inwestycje” Luenberger D.G. „Teoria inwestycji finansowych” Sopoćko A. „Instrumenty finansowe” „Instrumenty pochodne. Sympozjum matematyki finansowej” UJ Kraków 1997 Dębski W. „Rynek finansowy i jego mechanizmy” Murphy J.J. „Analiza techniczna rynków finansowych” Schwager J.D.„Analiza techniczna rynków terminowych” Komar Z. „Sztuka spekulacji”

Analiza portfelowa Harry Markowitz, Merton Miller, William Sharpe - nagroda Nobla (1990) za pionierskie prace w dziedzinie ekonomii finansowej

Nagrody Nobla – analiza rynków finansowych 1981 James Tobin Relacje między rynkami finansowymi a decyzjami w zakresie wydatków, bezrobociem, produkcją i cenami 1985 Franco Modigliani Pionierska analiza oszczędności i rynków finansowych