Mateusz Wieczorkiewicz

Slides:



Advertisements
Podobne prezentacje
Równanie Schrödingera
Advertisements

Równanie Schrödingera
Tranzystory Tranzystory bipolarne Tranzystory unipolarne bipolarny
Diody półprzewodnikowe i ich zastosowanie
Cele wykładu Celem wykładu jest przedstawienie: konfiguracji połączeń,
Elementy Elektroniczne
Elementy Elektroniczne
ELEMENTY ELEKTRONICZNE
Tranzystor Trójkońcówkowy półprzewodnikowy element elektroniczny, posiadający zdolność wzmacniania sygnału elektrycznego. Nazwa tranzystor pochodzi z angielskiego.
Tranzystor polowy, tranzystor unipolarny, FET
Elementy nieliniowe Nieliniowość tych elementów jest związana z fizyką transportu nośników ładunku w tych elementach dielektryki, isolatory Ga, As Si półprzewodniki.
Metale Najczęstsze struktury krystaliczne : heksagonalna,
kontakt m-s, m-i-s, tranzystory polowe
Złącze P-N.
Prezentację wykonała: mgr inż. Anna Jasik
Wykonał Artur Kacprzak kl. IVaE
1 Własności elektronowe amorficznych stopów Si/Me:H w pobliżu przejścia izolator-metal Gęste pary metali (wzrost gęstości -> I-M) niemetale poddane wysokiemu.
Podstawy teorii przewodnictwa
DIELEKTRYKI TADEUSZ HILCZER
Kiedy półprzewodniki stają się przewodnikami i izolatorami?
Luminescencja w materiałach nieorganicznych Wykład monograficzny
Metale Najczęstsze struktury krystaliczne : heksagonalna,
Wykład 10.
Nośniki nadmiarowe w półprzewodnikach cd.
Wykład IV Teoria pasmowa ciał stałych.
Złącza półprzewodnikowe
Wykład V Półprzewodniki samoistne i domieszkowe.
TRANZYSTOR BIPOLARNY.
Wykład Półprzewodniki Pole magnetyczne
Lasery i diody półprzewodnikowe
Materiały Półprzewodnikowe
Materiały Półprzewodnikowe
DETEKTORY I MIESZACZE.
Elektryczność i Magnetyzm
Elektryczność i Magnetyzm
Diody półprzewodnikowe
Zjawisko fotoelektryczne
WŁAŚCIWOŚCI PÓŁPRZEWODNIKÓW
TRANZYSTORY POLOWE – JFET
Miłosz Andrzejewski IE
Tranzystory z izolowaną bramką
Półprzewodniki Wykonał: Kamil Gręźlikowski kl. 1H.
Tyrystory.
DIODA.
Politechnika Rzeszowska
Politechnika Rzeszowska
Rodzaje wiązań chemicznych
Materiały pochodzą z Platformy Edukacyjnej Portalu
CHEMIA DEFEKTÓW PUNKTOWYCH, CZ. II – NIESTECHIOMETRIA I DOMIESZKOWANIE
ZJAWISKO FOTOELEKTRYCZNE ZEWNĘTRZNE Monika Jazurek
Opór elektryczny przewodnika Elżbieta Grzybek Michał Hajduk
3. Elementy półprzewodnikowe i układy scalone c.d.
3. Elementy półprzewodnikowe i układy scalone
KRYSZTAŁY – RODZAJE WIĄZAŃ KRYSTALICZNYCH
Kryształy – rodzaje wiązań krystalicznych
Kryształy – rodzaje wiązań krystalicznych
Półprzewodniki i urządzenia półprzewodnikowe
Półprzewodniki r. Aleksandra Gliniany.
Metale i izolatory Teoria pasmowa ciał stałych
Półprzewodniki i urządzenia półprzewodnikowe Elżbieta Podgórska Zarządzanie i Inżynieria Produkcji Wydział Górnictwa i Geoinżynierii Gr 3, rok 4
Półprzewodniki i urządzenia półprzewodnikowe
Fizyka Prezentacja na temat: „Półprzewodniki i urządzenia półprzewodnikowe” MATEUSZ DOBRY Kraków, 2015/2016.
TEMAT: Kryształy – wiązania krystaliczne
TECHNOLOGIE MIKROELEKTRONICZNE Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, Gliwice (
DOMIESZKOWANIE DYFUZYJNE
Pozostałe rodzaje wiązań
Materiał edukacyjny wytworzony w ramach projektu „Scholaris - portal wiedzy dla nauczycieli” współfinansowanego przez Unię Europejską w ramach Europejskiego.
Wiązania w sieci przestrzennej kryształów
DOMIESZKOWANIE DYFUZJA
2. ZJAWISKA KONTAKTOWE Energia elektronów w metalu
Zapis prezentacji:

Mateusz Wieczorkiewicz Półprzewodniki Mateusz Wieczorkiewicz

MATERIAŁY PÓŁPRZEWODNIKOWE Półprzewodniki obejmują obszerną grupę materiałów, które ze względu na przewodnictwo elektryczne zajmują pośrednie miejsce pomiędzy metalami a izolatorami. Półprzewodniki stanowią oddzielną klasę substancji, gdyż ich przewodnictwo ma szereg charakterystycznych cech. W dostatecznie niskich temperaturach półprzewodnik staje się izolatorem. Drugą ważną cechą półprzewodników jest zmiana przewodnictwa elektrycznego w wyniku niewielkich zmian ich składu.

Klasyfikacja materiałów elektrycznych

Budowa atomu krzemu i germanu

MODEL PASMOWY Teoria pasmowa – jest to teoria kwantowa opisująca stany energetyczne elektronów w krysztale. W odróżnieniu od atomów, w których dozwolone stany energetyczne elektronów stanowią zbiór poziomów dyskretnych, dozwolone elektronowe stany energetyczne w kryształach mają charakter pasm o szerokości kilku elektronowoltów. Pasmo przewodnictwa Pasmo zabronione Pasmo podstawowe Wg X W

Przewodnik Półprzewodnik Izolator Pasmo podstawowe Pasmo zabronione Pasmo przewodnictwa 6

Półprzewodniki samoistne

Półprzewodniki samoistne Półprzewodnikiem samoistnym nazywamy półprzewodnik idealnie czysty bez żadnych domieszek ani defektów sieci krystalicznej. Atomy półprzewodników (krzem, german) posiadają na zewnętrznej powłoce (walencyjnej 4 elektrony. Każdy atom poprzez te elektrony łączy się z czterema innymi atomami. Powstaje w ten sposób bardzo trwałe wiązanie kowalencyjne. Struktura półprzewodnika samoistnego oraz jego model pasmowy w temperaturze T=0K przedstawione są na poniższych rysunkach.

Przyjmuje się, że w temperaturze 0 kelwinów w paśmie przewodnictwa nie ma elektronów, natomiast w T>0K ma miejsce generacja par elektron-dziura; im wyższa temperatura, tym więcej takich par powstaje. Rekombinacja Generacja Wpr Wc Wv X L W T >0 K Foton

Półprzewodniki niesamoistne

Półprzewodnik typu n i typu p (półprzewodniki niesamoistne) Półprzewodnik niesamoistny jest wówczas, gdy w sieci krystalicznej monokryształu zamiast atomów pierwiastka materiału półprzewodnikowego znajduje się inny atom (np. w sieci krystalicznej krzemu znajduje się fosfor). Powstaje wówczas tzw. półprzewodnik domieszkowany, a ten inny atom nazywamy domieszką. Rozróżniamy dwa rodzaje domieszek: donorową i akceptorową. Jeśli na skutek nieregularności sieci krystalicznej w półprzewodniku będą przeważać nośniki typu dziurowego, to półprzewodnik taki nazywać będziemy półprzewodnikiem typu p (niedomiarowy). A gdy będą przeważać nośniki elektronowe, będziemy nazywać je półprzewodnikami typu n (nadmiarowy).

Półprzewodnik typu n uzyskuje się przez dodanie – w procesie wzrostu kryształu krzemu – domieszki pierwiastka pięciowartościowego (np. antymon, fosfor). Niektóre atomy krzemu zostaną zastąpione w sieci krystalicznej atomami domieszki, zwanymi donorami Si +4 P +5 Elektron nadmiarowy

Rodzaje półprzewodników

Każdy atom domieszki ma pięć elektronów walencyjnych, z których cztery są związane z sąsiednimi atomami krzemu. A piąty elektron jest wolny i może być łatwo oderwany od atomu domieszki – jonizując dodatnio. Elektron wówczas przechodzi do pasma przewodnictwa półprzewodnika. Atomy domieszki w modelu pasmowym półprzewodnika znajdują się na tzw. poziomie donorowym, który występuje w pobliżu dna pasma przewodnictwa półprzewodnika Pasmo podstawowe Poziom donorowy Pasmo przewodnictwa (nadmiar elektronów) Elektrony X W

Półprzewodnik typu p uzyskuje się przez zastąpienie niektórych atomów krzemu atomami pierwiastków trójwartościowych (np. glinu, galu). Na rysunku przedstawiono model sieci krystalicznej krzemu z domieszką atomów indu. Pasmo podstawowe (nadmiar dziur) Poziom akceptorowy Pasmo przewodnictwa Dziury X W Si +4 In +3 Dziura

Rodzaje półprzewodników

Półprzewodniki domieszkowane

Domieszki w krzemie

Domieszkowanie materiałów półprzewodnikowych

Złącze p-n czyli dioda półprzewodnikowa Dioda półprzewodnikowa powstaje przez zetknięcie dwóch półprzewodników o różnych rodzajach przewodności niesamoistnej. Granica zetknięcia półprzewodnika typu p z półprzewodnikiem typu n nosi nazwę złącza p-n. Można je uzyskać w jednym krysztale, jeżeli wytworzyć w nim dzięki odpowiednim domieszkom równocześnie obszary o przewodności p i n. Złącza takie wytwarza się zwykle w czasie wzrostu (hodowania) kryształu lub metodami dyfuzji domieszek w podwyższonej temperaturze. Rozkład ładunku i nośników w niespolaryzowanej diodzie półprzewodnikowej n-p – swobodne nośniki ładunku.

Rodzaje przyrządów półprzewodnikowych Rozwój elektroniki był i jest ściśle związany z rozwojem przyrządów półprzewodnikowych, osiąganiem przez nie większych prądów przewodzenia, wyższych napięć blokujących i korzystniejszych parametrów dynamicznych. Przyrządy półprzewodnikowe można podzielić na trzy zasadnicze grupy: przyrządy jonowe, elektronowe i półprzewodnikowe. jonowe to prostowniki rtęciowe, ignitrony i tyratrony, elektronowe to diody i triody próżniowe, półprzewodnikowe to diody półprzewodnikowe, tranzystory bipolarne, tyrystory konwencjonalne, tyrystory wyłączalne, tranzystory polowe mocy, tranzystory IGBT, ulepszone przyrządy mocy sterowane napięciowo, układy scalone analogowe i cyfrowe.

Złącze typu n-p Złącze n-p p n Dzięki dyfuzji elektronów z n do p i dziur z p do n powstaje w warstwie przejściowej strefa ujemnego i dodatniego ładunku przestrzennego stanowiącego warstwę zaporową. W warunkach równowagi termodynamicznej nie płynie prąd elektryczny. Koncentracja donorów i akceptorów Koncentracja dziur i elektronów dziury elektrony Na wysokość bariery U możemy wpływać przez przyłożenie napięcia do złącza n-p. Gęstość ładunku potencjał p n U

    Przebicie złącza   Przebicie złącza: oznacza zniszczenie lub trwałe uszkodzenie złącza pod wpływem gwałtownego wzrostu prądu, przy czym polaryzacja złącza występuje w kierunku zaporowym. p n Zjawisko Zenera – występuje ono w złączach o wąskiej warstwie zaporowej lub silnie domieszkowanych. Istotą tego zjawiska jest przejście elektronu uwolnionego z wiązania kowalencyjnego z półprzewodnika typu P do typu N , nie mając energii większej od energii tej bariery. Takie przejście nazywamy tunelowym. W wyniku tego zjawiska gwałtownie zwiększa się prąd wsteczny złącza. Zjawisko Zenera występuje przy napięciach mniejszych niż 5V w złączach krzemowych.

Zjawisko tunelowe Zjawisko tunelowe.   Zjawisko tunelowe: występuje w złączach bardzo silnie domieszkowanych, przy polaryzacji złącza w kierunku przewodzenia. W modelu pasmowym, dno pasma podstawowego półprzewodnika typu P jest powyżej wierzchołka pasma przewodnictwa półprzewodnika typu N. To umożliwia przejście tunelowe nośników z półprzewodnika P do N, a utrudnia przejście w przeciwną stronę nawet przy bardzo małym napięciu polaryzacji. p n Zjawisko tunelowe

ELEKTROTECHNIKA I ELEKTRONIKIA – Jakub Literatura: ELEKTROTECHNIKA I ELEKTRONIKIA – Jakub Dawidziuk Notatki własne

Dziękuje za uwage