MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii.

Slides:



Advertisements
Podobne prezentacje
Wykład Prawo Coulomba W 1785 roku w oparciu o doświadczenia z ładunkami Charles Augustin Coulomb doszedł do trzech następujących wniosków dotyczących.
Advertisements

5.6 Podsumowanie wiadomości o polu elektrycznym
Wykład Prawo Gaussa w postaci różniczkowej E
Wykład Zależność pomiędzy energią potencjalną a potencjałem
Wykład 4 2. Przykłady ruchu 1.5 Prędkość i przyśpieszenie c.d.
Reinhard Kulessa1 Wykład Środek masy Zderzenia w układzie środka masy Sprężyste zderzenie centralne cząstek poruszających się c.d.
Zasady dynamiki Newtona - Mechanika klasyczna
PRACA , moc, energia.
Temat: Ruch jednostajny
Wykład III ELEKTROMAGNETYZM
Dynamika Całka ruchu – wielkość, będąca funkcją położenia i prędkości, która w czasie ruchu zachowuje swoją wartość. Energia, pęd i moment pędu - prawa.
Dane INFORMACYJNE Nazwa szkoły:
ELEKTROSTATYKA I.
Kinematyka.
Przewodnik naładowany
Wykład 4 dr hab. Ewa Popko
Siły zachowawcze Jeśli praca siły przemieszczającej cząstkę z punktu A do punktu B nie zależy od tego po jakim torze poruszała się cząstka, to ta siła.
Wykład VIIIa ELEKTROMAGNETYZM
1.Praca 2. Siły zachowawcze 3.Zasada zachowania energii
Wykład Równania Maxwella Fale elektromagnetyczne
Test 1 Poligrafia,
FIZYKA dla studentów POLIGRAFII Wykład 4
DYNAMIKA Zasady dynamiki
WSTĘP Zmiany (drgania) natężeń pól elektrycznego i magnetycznego rozchodzą się w przestrzeni (w próżni lub w ośrodkach materialnych) w postaci fal elektromagnetycznych.
Nieinercjalne układy odniesienia
Ruch drgający Drgania – zjawiska powtarzające się okresowo
równanie ciągłości przepływu, równanie Bernoulliego.
RÓWNOWAGA WZGLĘDNA PŁYNU
STATYKA PŁYNÓW 1. Siły działające w płynach Siły działające w płynach
MECHANIKA NIEBA WYKŁAD r.
Biomechanika przepływów
Wykład 6 Elektrostatyka
Opracowała: mgr Magdalena Gasińska
Wykład 3 Dynamika punktu materialnego
MECHANIKA 2 Wykład Nr 11 Praca, moc, energia.
Projekt Program Operacyjny Kapitał Ludzki
MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW
Energia.
MECHANIKA 2 Wykład Nr 10 MOMENT BEZWŁADNOŚCI.
Drgania punktu materialnego
Dynamika układu punktów materialnych
RUCH PŁASKI BRYŁY MATERIALNEJ
MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW
DYNAMIKA Dynamika zajmuje się badaniem związków zachodzących pomiędzy ruchem ciała a siłami działającymi na ciało, będącymi przyczyną tego ruchu Znając.
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
RUCH KULISTY I RUCH OGÓLNY BRYŁY
Dynamika.
Ruch w polu centralnym Siły centralne – siłę nazywamy centralną, gdy wszystkie kierunki Jej działania przecinają się w jednym punkcie – centrum siły a)
dr inż. Monika Lewandowska
MECHANIKA 2 Wykład Nr 14 Teoria uderzenia.
Ruch jednostajny prostoliniowy i jednostajnie zmienny Monika Jazurek
Dynamika ruchu płaskiego
Temat: Energia w ruchu harmonicznym
REAKCJA DYNAMICZNA PŁYNU MECHANIKA PŁYNÓW
MECHANIKA NIEBA WYKŁAD r. E r Zagadnienie dwóch ciał I prawo Keplera Potencjał efektywny Potencjał efektywny w łatwy sposób tłumaczy kształty.
Wykład Rozwinięcie potencjału znanego rozkładu ładunków na szereg momentów multipolowych w układzie sferycznym Rozwinięcia tego można dokonać stosując.
Projektowanie Inżynierskie
Reinhard Kulessa1 Wykład Ruch rakiety 5 Ruch obrotowy 5.1 Zachowanie momentu pędu dla ruchu obrotowego punktu materialnego Wyznaczanie środka.
Wówczas równanie to jest słuszne w granicy, gdy - toru krzywoliniowego nie można dokładnie rozłożyć na skończoną liczbę odcinków prostoliniowych. Praca.
Trochę matematyki - dywergencja Dane jest pole wektora. Otoczymy dowolny punkt P zamkniętą powierzchnią A. P w objętości otoczonej powierzchnią A pole.
PODSTAWY MECHANIKI PŁYNÓW
Prowadzący: dr Krzysztof Polko
Trochę matematyki Przepływ cieczy nieściśliwej – zamrozimy ciecz w całej objętości z wyjątkiem wąskiego kanalika o stałym przekroju – kontur . Ciecz w.
4. Praca i energia 4.1. Praca Praca wykonywana przez stałą siłę jest iloczynem skalarnym tej siły i wektora przemieszczenia (4.1) Ft – rzut siły na kierunek.
POTENCJALNY OPŁYW WALCA
Prowadzący: dr Krzysztof Polko
Statyczna równowaga płynu
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
ELEKTROSTATYKA.
Superpozycja natężeń pól grawitacyjnych
Zapis prezentacji:

MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii

WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji , czyli (2)

POTENCJAŁ POLA SIŁ Funkcję nazywamy potencjałem pola sił. Potencjał spełnia następujące zależności: (3) lub w postaci wektorowej

SIŁA W POTENCJALNYM POLU SIŁ Cechy siły potencjalnego pola sił : a) Moduł siły jest równy b) kierunek prostopadły do powierzchni ekwipotencjalnej, c) Siła ma zwrot od powierzchni wyższego potencjału do powierzchni niższego potencjału.

WŁASNOŚCI POTENCJALNEGO POLA SIŁ Po zróżniczkowaniu pierwszego równania (z układu 3) względem y, drugiego względem x, otrzymamy: (4) Z (4) wynika, że: (5) Podobnie, różniczkując względem „przemiennych" kierunków układ równań (3), dochodzimy do następujących zależności: (6)

WŁASNOŚCI POTENCJALNEGO POLA SIŁ Składowe siły pola muszą spełniać związki (6), ażeby pole sił było polem potencjalnym. W postaci wektorowej: (7) Aby pole sił było polem potencjalnym, rotacja wektora siły pola musi być równa zeru.

PRACA W POTENCJALNYM POLU SIŁ Praca elementarna (8) W polu potencjalnym praca elementarna jest różniczką zupełną pewnej funkcji skalarnej - potencjału pola sił - ze znakiem ujemnym. Praca całkowita (9) stąd (10) W polu potencjalnym praca całkowita jest równa różnicy potencjałów w położeniu początkowym i końcowym.

CECHY POTENCJALNEGO POLA SIŁ a) potencjał jest skalarną funkcją położenia b) potencjał istnieje w polu, dla którego c) w polu potencjalnym praca elementarna jest równa różniczce zupełnej potencjału ze znakiem ujemnym d) praca całkowita w polu potencjalnym nie zależy od kształtu toru i równa się różnicy potencjałów e) praca w polu potencjalnym po dowolnej krzywej leżącej na powierzchni ekwipotencjalnej jest równa zeru.

CECHY POTENCJALNEGO POLA SIŁ h) powierzchnie ekwipotencjonalne i linie sił tworzą układ ortogonalny, i) siły pola są zwrócone od powierzchni wyższego potencjału do powierzchni niższego potencjału. j) praca całkowita w polu potencjalnym po dowolnej linii zamkniętej jest równa zeru

PRACA W POLU SIŁ CIĘŻKOŚCI Składowe sił pola grawitacyjnego Ziemi Rys. 4 Praca elementarna Potencjał pola sił ciężkości ma postać: (11) Praca całkowita od położenia 1 do położenia 2 (rys. 4) będzie równa

PRACA W POLU SIŁ CIĘŻKOŚCI Przyjmiemy, że na poziomie Ziemi (na której znajduje się położenie 2) potencjał jest równy zeru. Wtedy praca całkowita wynosi : (12) Pracę nazywamy energią potencjalną. Jest to praca, jaką wykona pole sił ciężkości przy przemieszczeniu masy m z wysokości h na powierzchnię Ziemi.

ZASADA ZACHOWANIA ENERGII MECHANICZNEJ Z zasady pracy i energii kinetycznej oraz pracy i energii potencjalnej wynika że: czyli (13) Jest to forma różniczkowa zasady zachowania energii mechanicznej. Całkując to równanie otrzymujemy (14) W polu potencjalnym suma energii kinetycznej i potencjalnej jest w każdym położeniu wielkością stalą. W odniesieniu do poruszającego się punktu zasadę tę możemy przedstawić za pomocą wzoru (15)

ZASADA ZACHOWANIA ENERGII MECHANICZNEJ Przykład 1 A h B Z zasady zachowania energii mechanicznej EA = EB, (E = Ep+ Ek)

ZASADA ZACHOWANIA ENERGII MECHANICZNEJ Rys. 5 Przykład 2 Po gładkim torze porusza się punkt materialny o masie m. Z zasady zachowania energii (15) wynika równość: (16) a stąd (17)

ZACHOWANIE PUNKTU W POLU SIŁ CIĘŻKOŚCI Największa wysokość zmax, którą osiągnie punkt materialny, otrzymamy v = 0, podstawiając do równania (17) (18) Wynika stąd, że: na jednym i tym samym poziomie punkt ma tę samą prędkość (przy założeniu toru gładkiego), maksymalny poziom, jaki osiągnie punkt materialny, wynosi zmax (18), punkt materialny przejdzie przez wszystkie „garby„ toru, nie większe od wysokości zmax.

RÓWNOWAGA (19) Rozróżniamy: Równowagę punktu w polu ciężkości na gładkim torze (19) Punkt będzie w równowadze na krzywej gładkiej wtedy, gdy wypadkowa sił czynnych będzie prostopadła do tej krzywej. Rozróżniamy: równowagę stałą, która zachodzi w położeniu, w którym wychylony z położenie równowagi punkt materialny będzie się poruszał w pobliżu tego położenia równowagi, równowagę chwiejną, która zachodzi w ,położeniu, w którym nawet dowolnie m prędkość udzielona punktowi materialnemu oddala go na stałe od tego położenia równowagi, równowagę obojętną, zachodzącą w położeniu, gdzie punkt materialny wychylony ze swego położenia równowagi natrafia w pobliżu na nowe położenie równowagi.

RÓWNOWAGA W polu sił ciężkości równowaga punktu materialnego zachodzi w położeniu, gdzie energia potencjalna osiąga ekstremum (rys.6). W szczególności równowaga stała zachodzi w położeniu, w którym energia potencjalna osiąga minimum. Jest to tzw. kryterium stateczności Mindinga i Dirichleta. Rys. 6

POSTACIE ENERGII ENERGIA – zdolność układu do wykonania pracy potencjalna położenia, sprężystości potencjalna ciśnienia (płynu) kinetyczna elektryczna chemiczna cieplna jądrowa termojądrowa elektrostatyczna, magnetyczna, elektromagnetyczna