FIZYKA CZĄSTEK od starożytnych do modelu standardowego i dalej

Slides:



Advertisements
Podobne prezentacje
ROZWÓJ POGLĄDÓW NA BUDOWE
Advertisements

ATOM.
Wykład IV.
Ewolucja Wszechświata
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych
Tajemniczy świat atomu
Elementarne składniki materii
dr inż. Monika Lewandowska
Leptogeneza z hierarchicznymi masami neutrin Krzysztof Turzyński IFT.
Zawsze zdumiewa mnie, że co tylko ludzie wymyślą, to rzeczywiście się zdarzy. Abdus Salam Abdus Salam – pakistański fizyk, współlaureat Nagrody Nobla w.
Rodzaje cząstek elementarnych i promieniowania
W poszukiwaniu elementarności
Silnie oddziałujące układy nukleonów
Izotopy.
Budowa atomu.
Big Bang teraz.
Odkrycie jądra atomowego
Ewolucja Wszechświata
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 3 – modele jądrowe cd.
Oddziaływania Elementy kwantowej elektrodynamiki (QED) Teoria Yukawy
Symetrie Spin Parzystość Spin izotopowy Multiplety hadronowe
N izotony izobary izotopy N = Z Z.
Związki z nauką.
Fizyka neutrin – wykład 3
FIZYKA CZĄSTEK od starożytnych do modelu standardowego i dalej
Rozwój poglądów na budowę materii
WYKŁAD 1.
Dlaczego we Wszechświecie
Fizyka XX wieku.
Odkrywanie cząstek elementarnych cześć I
Promieniowanie jądrowe
Elementy chemii kwantowej
Wstęp do fizyki cząstek elementarnych
Wstęp do fizyki cząstek elementarnych
Historia Wczesnego Wszechświata
Wstęp do fizyki cząstek elementarnych Introduction to particle physics
Jak się tego dowiedzieliśmy? Przykład: neutrino Przypomnienie: hipoteza neutrina Pauli ’30 Przesłanki: a) w rozpadzie  widmo energii elektronu ciągłe.
Wczesny Wszechświat Krzysztof A. Meissner CERN
Cząstki i siły tworzące nasz wszechświat Piotr Traczyk IPJ Warszawa.
Jan Kalinowski Uniwersytet Warszawski
Fizyka jądrowa Kusch Marta I F.
Odkrycie promieniotwórczości
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Rozpad . Q   0,5 MeV (rozpad  ) Q   2,5 MeV (rozpad  )
Jądro atomowe - główny przedmiot zainteresowania fizyki jądrowej
Podstawy fizyki cząstek 2011
Promieniowanie jądrowe. Detektory promieniowania jądrowego
Podstawy fizyki cząstek 2014
Cząstki elementarne..
Cząstki elementarne i ich oddziaływania
CZĄSTKI ELEMENTARNE JAK TO ZROZUMIEĆ CZYLI MIĘDZY INNYMI O GOTOWANIU MAKARONU W przygotowaniu skorzystano z prezentacji innych autorów takich jak: Agnieszka.
Zakaz Pauliego Kraków, Patrycja Szeremeta gr. 3 Wydział: Górnictwa i Geoinżynierii Kierunek: Zarządzanie i Inżynieria Produkcji.
Promieniowanie jądrowe. Detektory promieniowania jądrowego Fizyka współczesna Kamil Kumorowicz Wydział Górnictwa i Geoinżynierii Górnictwo i Geologia,
Teoria Bohra atomu wodoru
Budowa atomu Poglądy na budowę atomu. Model Bohra. Postulaty Bohra
Izotopy i prawo rozpadu
Równania Schrödingera Zasada nieoznaczoności
Co i gdzie się mierzy Najważniejsze ośrodki fizyki cząstek na świecie z podaniem ich najciekawszych wyników i kierunków przyszłych badań Charakterystyka.
N izotony izobary izotopy N = Z Z.
Fizyka neutrin – wykład 11
Wstęp do fizyki cząstek
Fizyka jądrowa. IZOTOPY: atomy tego samego pierwiastka różniące się liczbą neutronów w jądrze. A – liczba masowa izotopu Z – liczba atomowa pierwiastka.
Historyczny rozwój pojęcia atomu Oleh Iwaszczenko 7a.
Pojęcie materii według mechaniki kwantowej
Zapis prezentacji:

FIZYKA CZĄSTEK od starożytnych do modelu standardowego i dalej Krzysztof Fiałkowski, IFUJ

Plan wykładów Krótka historia fizyki cząstek: prehistoria, źródła naturalne i akceleratory, leptony i hadrony, model kwarków, unifikacja GSW, QCD i kompletny model standardowy Droga odkryć na przykładzie neutrin: reaktory, Słońce, akceleratory, detektory, masy neutrin, oscylacje, neutrino Majorany Podsumowanie i perspektywy: nagrody Nobla, lista cząstek, brakujące ogniwa

Czy istnieją cząstki elementarne? Demokryt (via Lukrecjusz): istnieje granica możliwości podziału materii, czyli cząstki niepodzielne (atomos). Arystoteles: to niemożliwe, bo pomiędzy atomami byłaby próżnia, a na to natura nie pozwala. Dziś niby zgadzamy się z Demokrytem, ale TAK NAPRAWDĘ próżnia to nie próżnia, więc?

Atomy XIX wieku Dalton: atomy tłumaczą stałe proporcje pierwiastków w związkach chemicznych (z dokładnością do stałych wymiernych). Boltzmann: termodynamika jako fizyka statystyczna cząsteczek/atomów. Einstein, Smoluchowski: ruchy Browna jako skutki uderzeń atomów w widzialne cząstki zawiesiny, pyłki itp..

Budowa atomu Thomson: 1897 elektrony, 1904 model atomu „ciasta z rodzynkami”. 1896 Becquerel, 1900 Villard: radioaktywność a, b, g ( zmienność atomów). ’11 Rutherford: jądro dla wytłumaczenia rozpraszania cząstek a do tyłu, proton – jądro atomu wodoru.

Wstawka: jak badać mikrostrukturę? Naiwnie: a) zobaczyć, b) rozłożyć na części. Fizycznie: a) zbadać rozproszenie fali, b) dostarczyć energię > energii wiązania. Granice możliwości w zapisie kwantowym: a)l<<R (światło), Q2>ℏ2/R2E>ℏc/R (cząstki, to samo wg. de Broglie’a), b)DE≥ℏc/R (Heisenberg: znów to samo). Zatem: do badania mikroświata konieczne wielkie energie! Skala: ℏc≈0.2GeV·fm, więc 0.1nm↔1keV (atom) 10fm↔10MeV (jądro); będzie dalej!

Budowa atomu II Model Bohra atomu: „orbity” elektronów wokół jądra, ale bez promieniowania (wbrew fizyce klasycznej!). ’30 Pauli: hipoteza neutrina dla ocalenia praw zachowania energii i momentu pędu w rozpadzie b. Fermi: teoria rozpadu b, słabe oddziaływania: zerowy zasięg – nieskończona masa bozonu? ’32 Anderson: pozyton (antycząstka elektronu). ’32 Chadwick: neutron (a+Be=n+C; Joliot-Curie). Heisenberg (Majorana, Iwanienko): jądra -układy protonów i neutronów – „nukleonów”, izospin.

Początki fizyki cząstek Uwaga: dotąd wystarczały cząstki a z rozpadów (kilka MeV), wyższe energie z promieniowania kosmicznego ( a właściwie produktów zderzeń z atomami atmosfery). Od ’32 akceleratory (Cockroft, Walton liniowy, Lawrence cykliczny). ’35 Yukawa: teoria mezonowa dla wyjaśnienia skończonego zasięgu R sił jądrowych, a stąd np. stałej gęstości materii jądrowej. ’37 Anderson: mion, mezon? Nie! Kto zamawiał? ’47 Powell: odkrycie mezonu p, mp=ℏ/cR; pmn.

Niespodzianki powojenne ’47 Rochester, Butler: „cząstki V” w emulsji. ’52 Danysz, Pniewski: hiperjądra. ’52 Fermi: nowe hadrony (silnie oddziałujące), krótkożyjące („rezonanse”), DE≈100MeV. ’55 Lee-Yang: teoria niezachowania parzystości w rozpadzie b; Wu: potwierdzenie eksp.; neutrina o zerowej masie? ’55 Gell-Mann: dziwność S, prawo zachowania: cząstki dziwne tworzone parami w o. silnych, rozpad wolny przez o. słabe, bez zachowania S. ’56 Reines i Cowan: oddziaływanie neutrin.

Nowe akceleratory Cyklotron pozwalał na nadanie Ek<<mc2, wtedy częstość obiegu w stałym B stała. Do wyższych energii konieczna zmienność pola, wygodny stały promień, niewielka objętość pola i przyspieszanie „pęczków”: synchrotron (dla e v≈c, dla p zmienna). Dziś praktycznie cykliczne i liniowe mają te same elementy przyspieszające, MeV/m (może będzie GeV/m?), ale w cyklicznych strata na promieniowanie – granica 100GeV dla e, 20TeV dla p. Zderzające się wiązki!

Dalsze kłopoty i próby porządkowania ’61 Glashow: oddziaływania słabe jak elektromagnetyczne z nowymi bozonami? ’62 Lederman, Schwartz, Steinberger i inni: dwa neutrina. ’64 Cronin i Fitch: niezachowanie CP. ’64 Gell-Mann i Zweig: model kwarkowy (u,d,s) hadronów. Nieudane próby odkrycia kwarków – uwięzienie? ’67 Salam, Weinberg: pełna teoria „GSW” oddziaływań „elektrosłabych”.

Rewolucja lat 70-tych ’70 Glashow, Ilopoulos, Maiani: dla słabych o. konieczny czwarty kwark. ’73 Gross, Wilczek, Politzer: asymptotyczna swoboda silnych o.: kwarki uwięzione, ale im bliżej, tym słabiej oddziałują. ’74 Richter/Ting: odkrycie cząstki j/y, świat 4 kwarków(u,d,s,c) i 4 leptonów (e,ne,m,nm). ’75 Perl: odkrycie leptonu t. ’77 Lederman: cząstka ϒ - piąty kwark b.

„Kompletny” model standardowy ’83 UA1, UA2 (CERN collider): odkrycie bozonów W, Z m≈100mp (Nobel: Rubbia - collider, van der Meer - ogniskowanie). ’90 LEP (bilans rozpadów Z): tylko 3 neutrina. ’95 CDF, D0: odkrycie szóstego kwarku t w zderzeniach pp (rozpady na Wb). ’98 niespodzianka: neutrina mają masę!

Jak się tego dowiedzieliśmy? Przykład: neutrino Przypomnienie: hipoteza neutrina Pauli ’30 Przesłanki: a) w rozpadzie b widmo energii elektronu ciągłe od 0 do Emax (dla a, g dyskretne) b) jądra przed- i po rozpadzie oba spin całkowity (w ħ), albo oba połówkowy Niezachowanie energii i momentu pędu? List Pauli’ego