PODSTAWY MECHANIKI PŁYNÓW

Slides:



Advertisements
Podobne prezentacje
Wykład Zależność pomiędzy energią potencjalną a potencjałem
Advertisements

Wykład Równanie ciągłości Prawo Bernoulie’ego
Wykład 20 Mechanika płynów 9.1 Prawo Archimedesa
Kinetyczno-molekularna teoria budowy gazów i cieczy
Ruch układu o zmiennej masie
Mechanika płynów.
FIZYKA dla studentów POLIGRAFII Wykład 9 Mechanika płynów
Zasady dynamiki Newtona - Mechanika klasyczna
Płyny Płyn to substancja zdolna do przepływu.
DYNAMIKA WÓD PODZIEMNYCH
Materiały pochodzą z Platformy Edukacyjnej Portalu Wszelkie treści i zasoby edukacyjne publikowane na łamach Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Płyny – to substancje zdolne do przepływu, a więc są to ciecze i gazy
Wykład IX CIECZE.
Siły Statyka. Warunki równowagi.
OPORNOŚĆ HYDRAULICZNA, CHARAKTERYSTYKA PRZEPŁYWU
równanie ciągłości przepływu, równanie Bernoulliego.
Napory na ściany proste i zakrzywione
RÓWNOWAGA WZGLĘDNA PŁYNU
STATYKA PŁYNÓW 1. Siły działające w płynach Siły działające w płynach
Prawo Pascala.
Biomechanika przepływów
MECHANIKA PŁYNÓW Uniwersytet Przyrodniczy w Poznaniu
1.
A. Krężel, fizyka morza - wykład 3
Elementy hydrostatyki i aerostatyki
MECHANIKA 2 Wykład Nr 11 Praca, moc, energia.
Prawo Pascala i Kartezjusza
Fizyka Elementy mechaniki klasycznej. Hydromechanika.
Podstawy mechaniki płynów - biofizyka układu krążenia
Zasady przywiązywania układów współrzędnych do członów.
MECHANIKA 2 Wykład Nr 10 MOMENT BEZWŁADNOŚCI.
Dynamika układu punktów materialnych
WŁAŚCIWOŚCI MATERII Zdjęcie w tle każdego slajdu pochodzi ze strony:
DYNAMIKA Dynamika zajmuje się badaniem związków zachodzących pomiędzy ruchem ciała a siłami działającymi na ciało, będącymi przyczyną tego ruchu Znając.
3. Parametry powietrza – ciśnienie.
Projektowanie Inżynierskie
Elementy hydrodynamiki i aerodynamiki
Przygotowanie do egzaminu gimnazjalnego
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii.
CIŚNIENIE Justyna M. Kamińska Tomasz Rogowski
REAKCJA DYNAMICZNA PŁYNU MECHANIKA PŁYNÓW
DANE INFORMACYJNE Cisnienie hydrostatyczne i atmosferyczne
Wykład Rozwinięcie potencjału znanego rozkładu ładunków na szereg momentów multipolowych w układzie sferycznym Rozwinięcia tego można dokonać stosując.
Kilka zdań na temat atmosfery Atmosfera to gazowa powłoka Ziemi. Stałymi składnikami powietrza atmosferycznego są: azot, tlen,(99%) oraz argon, neon,
Projekt współfinansowany w ramach Europejskiego Funduszu Społecznego.
Dynamika bryły sztywnej
Niech f(x,y,z) będzie ciągłą, różniczkowalną funkcją współrzędnych. Wektor zdefiniowany jako nazywamy gradientem funkcji f. Wektor charakteryzuje zmienność.
Trochę matematyki - dywergencja Dane jest pole wektora. Otoczymy dowolny punkt P zamkniętą powierzchnią A. P w objętości otoczonej powierzchnią A pole.
PODSTAWY MECHANIKI PŁYNÓW
Prowadzący: dr Krzysztof Polko
Trochę matematyki Przepływ cieczy nieściśliwej – zamrozimy ciecz w całej objętości z wyjątkiem wąskiego kanalika o stałym przekroju – kontur . Ciecz w.
4. Praca i energia 4.1. Praca Praca wykonywana przez stałą siłę jest iloczynem skalarnym tej siły i wektora przemieszczenia (4.1) Ft – rzut siły na kierunek.
Ciśnienie i siła wyporu – podsumowanie (nie tylko w fizyce:)
3. Siła i ruch 3.1. Pierwsza zasada dynamiki Newtona
STATYKA I DYNAMIKA PŁYNÓW.
Siły działające w płynie
Prowadzący: dr Krzysztof Polko
Mechanika płynów Naczynia połączone Prawo Pascala.
Prawa ruchu ośrodków ciągłych
1.
Parcie hydrostatyczne
Tensor naprężeń Cauchyego
Statyczna równowaga płynu
Prawa ruchu ośrodków ciągłych
PODSTAWY MECHANIKI PŁYNÓW
Statyczna równowaga płynu
Mechanika płynów Dynamika płynu doskonałego Równania Eulera
Tensor naprężeń Cauchyego
ELEKTROSTATYKA.
Zapis prezentacji:

PODSTAWY MECHANIKI PŁYNÓW Wykład Nr 2 Siły działające w płynie (siła masowa, siła powierzchniowa) Równanie równowagi płynu Prawo Pascala, Podział ciśnień, prawo naczyń połączonych, manometry cieczowe.

1. Podział sił działających w płynie Siły działające w płynach powierzchniowe masowe ciężkości odśrodkowa bezwładności (d’Alamberta) zewnętrzne (np. nacisk tłoka) wewnętrzne (naprężenia, napięcia)

2. Siła masowa Siły masowe działają na każdy element płynu o masie m zawarty w objętości V i znajdujący się w zewnętrznym polu sił. Przykładami sił masowych jest siła ciężkości siła bezwładności, siła odśrodkowa. W mechanice płynów zamiast posługiwać się wektorem siły głównej lepiej używać jednostkowej siły masowej odniesionej do masy płynu m.

Jednostkową siłę masową definiujemy w postaci: gdzie: jednostkowa siła masowa o składowych X, Y, Z, wektor główny siły masowych (np. siła bezwładności, odśrodkowa, ciężar), - wersory jednostkowe. Jednostkowa siła masowa ma wymiar przyspieszenia, ale posiada wszystkie cechy wektora siły.

Przykład: Obliczyć siłę masową działającą na masę o wielkości m=2 kg pochodząca od następujących sił głównych, 1) Siły ciężkości tej masy 2) Siły odśrodkowej =10 rad/s, R=0,8 m 3) Siły bezwładności a=5 m/s2 Ad.1. Ad.2. Ad.3.

3. Siła powierzchniowa Siły powierzchniowe działają na powierzchnię dA każdego elementu płynu o objętości dV. Siły powierzchniowe mogą być zewnętrzne lub wewnętrzne. Przykładem siły powierzchniowej zewnętrznej jest nacisk tłoka, natomiast wewnętrznej napięcie powierzchniowe. Jednostkową siłą powierzchniową lub naprężeniem nazywamy wektor siły głównej P odniesiony do powierzchni na którą działa A. Naprężenie σ w płynie może przybierać w każdym punkcie płynu nieskończenie wiele wartości (ponieważ przez dany punkt można przeprowadzić nieskończenie wiele powierzchni). Orientację w przestrzeni danej powierzchni określa jednostkowy wektor normalny (prostopadły) do tej powierzchni o współrzędnych n = nx i + ny j + nz k, naprężenie w takim razie zależy od wybranego punktu w płynie, orientacji powierzchni oraz czasu σ = σ (x, y, z, nx , ny, nz, t).

4. Równania równowagi płynów Siła masowa q(X,Y,Z) i powierzchniowa pA działająca na element płynu dxdydz

(1) (2) (3) Siła powierzchniowa działająca na element płynu Na ścianki płynu wzdłuż osi x działają składowe x,y,x siły powierzchniowej związane z ciśnieniem wewnątrz płynu wynoszące odpowiednio (1) przez analogie wzdłuż osi y i z (2) (3)

(4) (5) (6) Bilans sił masowych i powierzchniowych ma się równoważyć Składowe siły masowej działające na płyn: (4) (5) (6) Bilans sił masowych i powierzchniowych ma się równoważyć

Są to podstawowe równania statyki płynu. Równania (7-9) obustronnie dzielimy przez (dx, dy, dz), a następnie stronami mnożymy odpowiednio przez dx, dy, dz i sumujemy stronami Jeśli założymy, że w płynie ciśnienie jest stałe p=const to dp=0 to z równania (13) otrzymamy równanie powierzchni jednakowego ciśnienia (powierzchni ekwipotencjalnych) Z równania (13) elementarny przyrost ciśnienia wynosi: Są to podstawowe równania statyki płynu.

5. Równowaga przy braku sił masowych – prawo Pascala Blaise Pascal (1623-1662) – francuski matematyk, fizyk i filozof religii. Równania (10-12) zapisane w formie wektorowej mają postać: gdzie jest wektorem jednostkowej siły masowej o składowych X,Y,Z. W przypadku, gdy na płyn nie działają siły masowe (q=0) równanie to przybiera postać:

Prawo Pascala – gdyby na płyn działały wyłącznie siły powierzchniowe (brak sił masowych), to ciśnienie miało by jednakową wartość w każdym punkcie płynu. W warunkach ziemskich (w polu grawitacyjnym) warunek ten spełniony jest w przybliżeniu dla gazów. Ze względu na małą gęstość/masę siły masowe można pominąć. Prawo Pascala stosuje się również dla cieczy, gdy płyn znajduje się pod dużym ciśnieniem, np. w prasach hydraulicznych.

Prasa hydrauliczna

Przykład: Obliczyć jaka powinna być średnica d mniejszego tłoka w prasie hydraulicznej, aby na dużym tłoku otrzymać siłę 100 razy większą niż na małym tłoku. Średnica większego tłoka wynosi D=200 mm. Ile wyniesie ciśnienie w prasie jeśli siła F1 równa się 1000 N ? Ciśnienie w prasie:

6. Ciśnienie – podział ciśnień Ciśnienie powstaje w wyniku zderzania się molekuł płynu powierzchnią ciała stałego. Jeśli ciśnienie jest jednorodne. Jednostką ciśnienia w układzie SI jest paskal. W próżni ciśnienie wynosi 0 Pa. Każde inne ciśnienie, którego wartość podawana jest względem ciśnienia próżni nazywa się ciśnieniem bezwzględnym lub absolutnym.

Przykładem ciśnienia bezwzględnego (absolutnego) jest ciśnienie otoczenia nazywane ciśnieniem barometrycznym lub atmosferycznym (pb). W fizyce jako wartość ciśnienia normalnego przyjmuje się pb=101 325 Pa. Jeżeli wartość ciśnienia podamy nie względem ciśnienia próżni tylko innego ciśnienia to ciśnienie takie nazywamy ciśnieniem względnym. Ciśnienie względne dzieli się na nadciśnienie i podciśnienie. Jeżeli wartość ciśnienia podamy nie względem ciśnienia próżni tylko innego ciśnienia to ciśnienie takie nazywamy ciśnieniem względnym. Ciśnienie względne dzieli się na nadciśnienie i podciśnienie. Najczęściej wartość ciśnienia względnego podawana jest względem ciśnienia barometrycznego.

Nadciśnienie (pn), jest to nadwyżka ciśnienia absolutnego nad ciśnieniem względem, którego jest podawane. Podciśnienie (pd), jest to różnica pomiędzy wartościami bezwględnymi ciśnieniami odniesienia, a podawanej wartości ciśnienia.

Wysokość ciśnienia słupa danej cieczy jest równa Przeliczenie z ciśnienia względnego na bezwzględne Przeliczenie z ciśnienia bezwzględne na względnego Wysokość ciśnienia słupa danej cieczy jest równa

Przykład 1: Zmierzono podciśnienie pd=30 kPa, obliczyć ile wynosi ciśnienie bezwzględne jeśli wysokość ciśnienia barometrycznego równa była hb=10,2 mH2O. Przykład 2: Które wartość ciśnienia jest wyższa, o wysokość nadciśnienie hn=5 m czy ciśnieniu bezwzględnym pa1=1012 hPa? Wartość ciśnienia barometrycznego wynosi pb=101 325 Pa. Przykład 3: Wysokość podciśnienia słupa wody wynosi hd=8 mH2O, obliczyć ile wynosi wysokość podciśnienia słupa rtęci? Gęstość wody 1000 kg/m3, gęstość rtęci 13600 kg/m3 czyli

7. Równowaga cieczy w polu sił ciężkości Wyznaczyć ciśnienie w cieczy o gęstości  na głębokości h, gdy na powierzchni cieczy występuje ciśnienie bezwzględne p0. W jaki sposób zmienia się ciśnienie z głębokością z? W polu sił ciężkości składowe jednostkowej siły masowej wynoszą:

Po podstawieniu do równania (14), równanie powierzchni jednakowego ciśnienia przyjmuje postać: Powierzchnie ekwipotencjalne w płynie w polu grawitacyjnym stanowią równoległe do siebie poziome płaszczyzny. Elementarny przyrost ciśnienia z (15): po dwustronnym scałkowaniu równania otrzymamy Stałą całkowania c wyznaczamy z warunku brzegowego: zatem: gz – nazywa się Ciśnienie na głębokości z=h wynosi

Jeśli w zbiorniku znajdują się 3 niemieszające się ciecze o gęstościach 1 < 2 < 3 i odpowiednio wysokościach h1, h2, h3, to ciśnienie w ostatniej cieczy wynosi.

Przykład 1: W zbiorniku znajdują się dwie niemieszające się ciecze o gęstościach i wysokościach odpowiednio równych 1=1000 kg/m3 h1=1 m, 2=13 600 kg/m3 h2=1 m. Obliczyć ciśnienia bezwzględne oraz hydrostatyczne w miejscu styku cieczy oraz na dnie zbiornika. Wyznaczyć kat pochylenia prostej ciśnienia hydrostatycznego. Ciśnienie barometryczne wynosi pb = 1013 hPa. Kąt pochylenia prostej zależy tylko od gęstości cieczy i jest bliski 90.

Przykład 2: Ciecz o gęstość =870 kg/m3 znajduje się w zbiorniku otwartym. Obliczyć na jakiej głębokości x ciśnienie bezwględne będzie 5-cio krotnie wyższe niż na głębokości h=2 m. Ciśnienie barometryczne wynosi pb = 1013 hPa. Ile będzie wynosiło ciśnienie hydrostatyczne na głębokości h=2 m oraz głębokości x? Ciśnienie hydrostatyczne na głębokości h=2 m Ciśnienie hydrostatyczne na głębokości x=57,48 m

Simon Stevin (1548-1620) – flamandzki inżynier, matematyk 8. Paradoks Stevina Simon Stevin (1548-1620) – flamandzki inżynier, matematyk Ciśnienie hydrostatyczne nie zależy od kształtu naczynia!

9. Prawo naczyń połączonych Prawo naczyń połączonych: Cząstki cieczy należące do tej samej ciągłej masy ciekłej i leżące na tej samej płaszczyźnie poziomej, podlegają działaniu jednakowego ciśnienia. Oznacza to, że w naczyniach połączonych w dwóch dowolnie wybranych przekrojach ciśnienia są takie same jeśli spełnione są dwa warunki: przekroje leżą na tym samym poziomie, w obu przekrojach jest ta sama nieprzerwana ciecz (o tej samej gęstości oraz nierozdzielona inną cieczą lub przegrodą). Otwarte naczynia połączone z jednorodnym płynem Zgodnie z prawem naczyń połączonych:

Zamknięte naczynia połączone z jednorodnym płynem Zgodnie z prawem naczyń połączonych:

Zamknięte naczynia połączone z dwoma jednorodnymi płynami Zgodnie z prawem naczyń połączonych: oraz

Manometr U-rurkowy (zwykły) 10. Manometry cieczowe Manometr U-rurkowy (zwykły) Zgodnie z prawem naczyń połączonych: oraz

Manometr U-rurkowy odwrócony Zgodnie z prawem naczyń połączonych: oraz

Mikromanometr z rurką pochyłą Z prawa naczyń połączonych: z kąta pochylenia rurki: z bilansu objętości:

Przykład 1: Mikromanometrem z rurką pochyłą zmierzono podciśnienie o wartości 700 Pa. Obliczyć wychylenie manometru, jeśli przełożenie manometru wynosiło 0,3, gęstość cieczy manometrycznej 870 kg/m3, średnica zbiornika 120 mm, średnica rurki 5 mm. Jaki popełnimy błąd względny w pomiarze podciśnienia jeśli pominiemy bilans objętości? Zmierzone podciśnienie z pominięciem bilansu objętości Błąd względny przy pominięciu bilansu objętości

Piezometr

Evangelista Torricelli (1608-1647) – włoski fizyk i matematyk. Barometr Torricellego Evangelista Torricelli (1608-1647) – włoski fizyk i matematyk. Dla rtęci h  760 mm Dla wody h  10 m

Manometry U-rurkowe

Manometr Recknagla

Mikromanometr Askania

Mikromanometr Askania