Linie długie w układach telekomunikacyjnych

Slides:



Advertisements
Podobne prezentacje
Przekształcenia geometryczne.
Advertisements

Równanie zwierciadła kulistego
Linia Długa Technika Cyfrowa i Impulsowa
Linia Długa Technika Cyfrowa i Impulsowa
Czwórnik RC R U1 U2 C Układ całkujący Filtr dolnoprzepustowy C.
prawa odbicia i załamania
Wzmacniacze Operacyjne
FALOWODY Pola E i H spełniają następujące warunki brzegowe na ściankach falowodu: Falowody prostokątne Zakłada się:  a > b falowód jest bezstratny (ścianki.
Rodzaje fal (przyjęto kierunek rozchodzenia się fali +0z)
Wykład no 12 sprawdziany:
Wykład no 14.
Rezonans w obwodach elektrycznych
JEJ WŁASNOŚCI ORAZ RODZAJE
MACIERZ ROZPROSZENIA.
Generatory napięcia sinusoidalnego
Wykonał: Ariel Gruszczyński
DIELEKTRYKI TADEUSZ HILCZER.
DIELEKTRYKI TADEUSZ HILCZER
Wykład Równanie telegrafistów 20.4 Zjawisko naskórkowości.
Wykład Impedancja obwodów prądu zmiennego c.d.
PASMA FAL ELEKTROMAGNETYCZNYCH
REZONATORY Proces stopniowego przekształcania się obwodu rezonansowego L, C w rezonator wnękowy (mikrofalowy tzw. rezonator prostopadłościenny) wraz ze.
WARUNKI BRZEGOWE. FALE NA GRANICY OŚRODKÓW
Zastosowania komputerów w elektronice
FALA PŁASKA LINIE DŁUGIE
FALOWODY.
Elektryczność i Magnetyzm
Elektryczność i Magnetyzm
Elektryczność i Magnetyzm
FALA PŁASKA LINIE DŁUGIE
Funkcje matematyczne Copyright © Rafał Trzop kl.IIc.
Opis matematyczny elementów i układów liniowych
Antenowe fakty i mity. O przydatności teorii w praktyce
Jednostka modułowa 311[07]O1 Jm. 4/1
Własności funkcji liniowej.
Figury płaskie I PRZESTRZENNE Wykonała: Klaudia Marszał
OKRĄG OPISANY NA CZWOROKĄCIE; OKRĄG WPISANY W CZWOROKĄT
FUNKCJA LINIOWA.
Zasady przywiązywania układów współrzędnych do członów.
  Prof.. dr hab.. Janusz A. Dobrowolski Instytut Systemów Elektronicznych, Politechnika Warszawska.
  Prof. dr hab. Janusz A. Dobrowolski Instytut Systemów Elektronicznych, Politechnika Warszawska.
  Prof. dr hab. Janusz A. Dobrowolski Instytut Systemów Elektronicznych, Politechnika Warszawska.
  Prof. dr hab. Janusz A. Dobrowolski Instytut Systemów Elektronicznych, Politechnika Warszawska.
Możesz kliknąć na odnośnik. Aby wyjść naciśnij Esc
FUNKCJE Pojęcie funkcji
RUCH KULISTY I RUCH OGÓLNY BRYŁY
Przygotowanie do egzaminu gimnazjalnego
Zjawiska falowe.
W1. GENERATORY DRGAŃ SINUSOIDALNYCH
ZAAWANSOWANA ANALIZA SYGNAŁÓW
Temat: Funkcja falowa fali płaskiej.
WYKŁAD 9 ODBICIE I ZAŁAMANIE ŚWIATŁA NA GRANICY DWÓCH OŚRODKÓW
Mostek Wheatstone’a, Maxwella, Sauty’ego-Wiena
WYKŁAD 5 OPTYKA FALOWA OSCYLACJE I FALE
Ruch jednowymiarowy Ruch - zmiana położenia jednych ciał względem innych, które nazywamy układem odniesienia. Uwaga: to samo ciało może poruszać się względem.
Ruch – jedno w najczęściej obserwowanych zjawisk fizycznych
Anteny i Propagacja Fal Radiowych
sinusoidalnie zmienne
DALEJ Sanok Spis treści Pojęcie funkcji Sposoby przedstawiania funkcji Miejsce zerowe Monotoniczność funkcji Funkcja liniowa Wyznaczanie funkcji liniowej,
Zasada działania prądnicy
Wybrane zagadnienia generatorów sinusoidalnych (generatorów częstotliwości)
Zjawisko rezonansu w obwodach elektrycznych. Rezonans w obwodzie szeregowym RLC U RCI L ULUL UCUC URUR.
KONDUKTOMETRIA. Konduktometria polega na pomiarze przewodnictwa elektrycznego lub pomiaru oporu znajdującego się pomiędzy dwiema elektrodami obojętnymi.
Matematyka przed egzaminem czyli samouczek dla każdego
Podstawy automatyki I Wykład /2016
Telekomunikacja Bezprzewodowa (ćwiczenia - zajęcia 1, 2, 3)
Elektronika.
2. Ruch 2.1. Położenie i tor Ruch lub spoczynek to pojęcia względne.
II. Matematyczne podstawy MK
Wstęp do układów elektronicznych
Zapis prezentacji:

Linie długie w układach telekomunikacyjnych (układy o stałych rozłożonych)

Trzeba stosować inne metody analizy = parametry jednostkowe linii

linia bezstratna: rj = 0, gj = 0 (rzeczywista) ważna jest długość fali w linii, a nie w wolnej przestrzeni

Spotykane konfiguracje przewodów linii długich

Praktyczny (przybliżony) pomiar parametrów jednostkowych

Równanie telegrafistów dla linii bezstratnej...

Rozwiązanie… x liczone od początku linii (od generatora) Jeżeli linia jest nieskończenie długa, musi być A2 = 0 Wtedy może to być definicją impedancji falowej

Przy liczeniu odległości od końca linii... napięcie fali padającej na końcu napięcie fali odbitej analogicznie dla admitancji !

Dla linii bezstratnej… lub przy częstotliwości, dla której długość linii jest równa 1/4 długości fali analogia z obwodem rezonansowym

Porównanie obwodów rezonansowych: klasycznego i z linii długiej

Jak przestrajać takie obwody rezonansowe? przestrajanie mechaniczne - praktycznie jednorazowe przestrajanie zmienną pojemnością - np.

wyznaczenie częstotliwości rezonansowej takiego obwodu rozwiązanie przybliżone lub numeryczne demo

musi być dielektryk

l = 3 cm Zf = 200 omów l = 2 cm C = 0 fo = 2500 MHz 3750 MHz C = 1 pF fo = 1040 MHz 1310 MHz C = 2 pF fo = 760 MHz 950 MHz C = 5 pf fo = 490 MHz 610 MHz Linia C

Przykład przestrajania obwodów w tunerze TV

linia jako element dopasowujący Tzw. transformator ćwierćfalowy Zk - rzeczywiste Zwe - rzeczywiste (L) (C)

linia ćwierćfalowa zwarta na końcu jako „izolator”

Odbicia w liniach długich współczynnik odbicia na końcu linii jednoznaczne przyporządkowanie przy ustalonej impedancji Zf

Jeżeli Zk = Zf k = 0 nie ma fali odbitej napięcie w każdym punkcie linii jest napięciem (tylko) fali padającej napięcie skuteczne mierzone wzdłuż linii jest stałe

Jeżeli Zk = Zf k = 0 nie ma fali odbitej napięcie w każdym punkcie linii jest napięciem (tylko) fali padającej napięcie skuteczne mierzone wzdłuż linii jest stałe

Jeżeli Zk = Zf k = 0 nie ma fali odbitej napięcie w każdym punkcie linii jest napięciem (tylko) fali padającej napięcie skuteczne mierzone wzdłuż linii jest stałe

Jeżeli Zk = Zf k = 0 nie ma fali odbitej napięcie w każdym punkcie linii jest napięciem (tylko) fali padającej napięcie skuteczne mierzone wzdłuż linii jest stałe

Jeżeli Zk = Zf k = 0 nie ma fali odbitej napięcie w każdym punkcie linii jest napięciem (tylko) fali padającej napięcie skuteczne mierzone wzdłuż linii jest stałe wykres napięcia wzdłuż linii

Jeżeli Zk  Zf k  0 występuje fala odbita napięcie w każdym punkcie linii jest sumą fali padającej i odbitej w pewnych miejscach napięcia te są w fazie, w innych w przeciwfazie

Jeżeli Zk  Zf k  0 występuje fala odbita napięcie w każdym punkcie linii jest sumą fali padającej i odbitej w pewnych miejscach napięcia te są w fazie, w innych w przeciwfazie

Jeżeli Zk  Zf k  0 występuje fala odbita napięcie w każdym punkcie linii jest sumą fali padającej i odbitej w pewnych miejscach napięcia te są w fazie, w innych w przeciwfazie

Jeżeli Zk  Zf k  0 występuje fala odbita napięcie w każdym punkcie linii jest sumą fali padającej i odbitej w pewnych miejscach napięcia te są w fazie, w innych w przeciwfazie

Współczynnik fali stojącej wartości skuteczne lub amplitudy, fazy chwilowe nieważne WFS jest miarą niedopasowania obciążenia do linii podawany np. przy opisie anten

Obliczenia impedancji w liniach długich za pomocą wykresu Smitha

współczynnik odbicia w dowolnym miejscu linii

?

Znając Zk można obliczyć Zx

dla układu bezstratnego moduł  nie zmienia się

Jest to koło na płaszczyźnie zespolonej, prezentujące wartości współczynnika odbicia, ale opisane w jednostkach impedancji Zk (lub Zx) Wykres Smith’a wartości unormowane

linia2 Każdy punkt na wykresie odpowiada odpowiedniej wartości współczynnika odbicia - odpowiada określonej impedancji Zk linia2

Jak obliczyć x , jeżeli znamy k? zmienia się tylko argument obrót na płaszczyźnie zespolonej cały obwód l/=0,5 okrąg zewnętrzny jest wyskalowany w jednostkach l/

Przykładowe obliczenia na wykresie S.

linia3 Zk=73+j42 Zf=300 Zf=300 Zk=73+j42 Zk=73+j42 Zf=300 Zf=300