Lasery – co każdy powinien wiedzieć,

Slides:



Advertisements
Podobne prezentacje
Laser.
Advertisements

Wojciech Gawlik - Optyka, 2007/08. wykład 12 1/17 Podsumowanie W11 Optyka fourierowska Optyka fourierowska soczewka dokonuje 2-wym. trafo Fouriera przykład.
Podsumowanie W1 Hipotezy nt. natury światła
Wojciech Gawlik - Optyka, 2006/07. wykład 13 1/17 Podsumowanie W12 Dwójłomność Dwójłomność x y z nxnx nyny nznz - propagacja w ośrodku dwójłomnym promień
Wojciech Gawlik - Optyka, 2006/07. wykład 12 1/12 Podsumowanie W11 Optyka fourierowska Optyka fourierowska 1. przez odbicie 1. Polaryzacja przez odbicie.
Wojciech Gawlik - Optyka, 2006/07. wykład 14 1/22 Podsumowanie W13 Źródła światła Promieniowanie przyspieszanych ładunków Promieniowanie synchrotronowe.
Podsumowanie W4 Wzory Fresnela: polaryzacja , TE polaryzacja , TM r
Wojciech Gawlik - Optyka, 2007/08. wykład 61/20 Podsumowanie W5 Wzory Fresnela dla n 1 >n 2 i 1 > gr : r 1 0 /2 i R R B gr R, || = rr * całkowite odbicie.
Podsumowanie W2 Widmo fal elektromagnetycznych
Wojciech Gawlik - Optyka, 2007/08. wykład 13 1/23 D. naturalna Podsumowanie W12 Dwójłomność Dwójłomność x y z nxnx nyny nznz - propagacja w ośrodku dwójłomnym.
Uzupełnienia nt. optyki geometrycznej
Cienkie soczewki 0 b, c  1 lH  l’H d  0 a  k1+k2 H=H’
Wojciech Gawlik - Optyka, 2006/07. wykład 14 1/22 Podsumowanie W13 Źródła światła Promieniowanie przyspieszanych ładunków Promieniowanie synchrotronowe.
Wojciech Gawlik - Optyka, 2007/08. wykład 9 1/9 Podsumowanie W8 - Spójność światła ograniczona przez – niemonochromatyczność i niestałość fazy fizyczne.
Light Amplification by Stimulated Emission of Radiation (LASER)
Wstęp do optyki współczesnej
Rozpraszanie światła.
Obrazy otrzymywane za pomocą zwierciadła wklęsłego
Fale t t + Dt.
ŚWIATŁO.
Prezentację wykonała: Anna Jasik Instytut Fizyki Zachodniopomorski Uniwersytet Technologiczny Badanie właściwości nieliniowych światłowodów i innych tlenkowych.
WYKŁAD 10 ATOMY JAKO ŹRÓDŁA ŚWIATŁA
Jadwiga Konarska Widma wibracyjnego dichroizmu kołowego i ramanowskiej aktywności optycznej sec-butanolu: Pomiary eksperymentalne i obliczenia.
Wykład V Laser.
Wykład XIII Laser.
1 Podstawy fotoniki Wykład 7 optoelectronics -koherencja (spójność) światła - wzmacniacz optyczny - laser.
Oddziaływanie fotonów z atomami Emisja i absorpcja promieniowania wykład 8.
Fizyczne Podstawy Teledetekcji Wykład 3
Wykład 1 Promieniowanie rentgenowskie Widmo promieniowania rentgenowskiego: ciągłe i charakterystyczne Widmo emisyjne promieniowania rentgenowskiego:
Metody modulacji światła
1 WYKŁAD WŁASNOŚCI PRZEJŚĆ WYMUSZONYCH 1.Prawdopodobieństwo przejść wymuszonych jest różne od zera tylko dla zewnętrznego pola o częstości rezonansowej,
WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab. Halina.
Spektroskopia transmisyjna/absorcyjna
Metody optyczne w biologii i medycynie
Generacja krótkich impulsów, i metoda autokorelacyjna pomiaru czasu trwania impulsów femtosekundowych.
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
markery, nanocząstki, kropki kwantowe
Techniki mikroskopowe
Optyczne metody badań materiałów
Laboratorium Laserowej Spektroskopii Molekularnej PŁ SERS dr inż. Beata Brożek-Pluska.
Centra NV - optyczna detekcja stanu spinowego
 Podsumowanie W12 Lasery w spektroskopii atomowej/molekularnej
Wojciech Gawlik, Metody Optyczne w Medycynie 2010/11 - wykł. 3 1/18 Lampy (termiczne)Lampy (termiczne) na ogół wymagają filtrów Źródła światła:
Wojciech Gawlik, Metody Opt. w Bio-Med, Biofizyka 2011/12 - wykł. 2 1/13 S0 S0 S0 S0 S1S1S1S1 S2S2S2S2 T1T1T1T1 T2T2T2T2   10 –10 – 10 –8 s   10 –6.
Widzialny zakres fal elektromagnetycznych
Wojciech Gawlik, Materiały fotoniczne II, wykł /20111 W ł asno ś ci optyczne atom – cz ą steczka – kryszta ł R. Eisberg, R. Resnick, „Fizyka kwantowa…”
Optyczne metody badań materiałów – w.2
Podsumowanie W1 Hipotezy nt. natury światła
3. Materiały do manipulacji wiązkami świetlnymi
Prowadzący: Krzysztof Kucab
Materiały fotoniczne nowej generacji
Podsumowanie W1 własności fal EM – polaryzacja – superpozycja liniowych, kołowych oddz. atomu z polem EM (klasyczny model Lorentza): E x  P =Nd 0 - 
Podsumowanie W Obserw. przejść wymusz. przez pole EM
Fizyczne Podstawy Teledetekcji Wykład 3
Optyczne metody badań materiałów
Optyczne metody badań materiałów
Materiały magnetooptyczne
Optyczne metody badań materiałów – w.2
Nieliniowość trzeciego rzędu
Metody i efekty magnetooptyki
Uzupełnienia nt. optyki geometrycznej
Podsumowanie W3 Wzory Fresnela: polaryzacja , TE polaryzacja , TM r
Optyczne metody badań materiałów – w.3
Podsumowanie W11 Obserwacja przejść rezonansowych wymuszonych przez pole EM jest możliwa tylko, gdy istnieje różnica populacji. Tymczasem w zakresie.
Optyczne metody badań materiałów
Doświadczenie Lamba-Retherforda – pomiar przesunięcia Lamba
Optyczne metody badań materiałów – w.3
Odbicie od metali duża koncentracja swobodnych elektronów
 Podsumowanie W5 Wzory Fresnela dla n1>n2 i 1 > gr :
Light Amplification by Stimulated Emission of Radiation.
Zapis prezentacji:

Lasery – co każdy powinien wiedzieć, ale się bał zapytać... główny mechanizm – emisja wymuszona – przez wzbudzone atomy Emisja wymuszona fazy emisji kierunki emisji częstości emisji Skorelowane z fotonami wymuszającymi !!! konieczne warunki działania lasera: Inwersja obsadzeń stanów o wyższej energii względem niższej (aby emisja promieniowania przeważała nad absorpcją) Rezonator laserowy pozwalający na zwiększenie liczby fotonów wymuszających (aby emisja wymuszona przeważała nad spontaniczną) Wojciech Gawlik - Opt.Met.Badania Materiałów 3 - 2009/10

transformacja materiałów Laserowa obróbka, Pole EM związane z promieniowaniem lasera może modyfikować a) str. energetyczną materiałów – własności fiz-chem. b) selektywnie inicjować reakcje chemiczne 2. Termiczne działanie wiązki laserowej na materiały (musi być absorbowana) Fotoablacja – rozrywanie wiązań molekularnych (dysocjacja, defragmentacja) 4. Laser-Plasma Deposition (nanoszenie materiałów za pomocą plazmy laserowej) (dwie wiązki lasera excymerowego generują strumienie plazmowe różnych substancji, które się osadzają na płytce substratu w odpowiednich proporcjach) Wojciech Gawlik - Opt.Met.Badania Materiałów 3 - 2009/10

Badania rozpraszania światła Rodzaje rozpraszania Rezonansowe – światło rezonansowo oddziałuje z określonym przejściem w atomach/cząsteczkach – absorpcja/reemisja  światła rozpraszanego =  św. reemitowanego – możliwy pomiar str. widmowej – str. energetycznej scatt exc Natęż. św. rozprosz. rozpraszanie elastyczne scatt = exc gdy bogatsza str. poziomów – bogatsze widma D1 D2 exc scatt Natęż. św. rozprosz. rozpraszanie Ramana scatt = excDi umożliwia pomiar rozszczepień Di D1 D2 Wojciech Gawlik - Opt.Met.Badania Materiałów 3 - 2009/10

SRS (Stimulated Raman Scattering) Z laserowym wzbudzeniem - rozpraszanie wymuszone 1 2 E=h(1-2) 2. Rozpraszanie nierezonansowe (oscylujący dipol) małe cząstki (objętość  ) – rozprasz. Rayleigha – elastyczne  kolor nieba i zachodzącego słońca duże cząstki – rozpraszanie Mie [Gustaw Mie] – zależne od rozmiarów cząstek, słabiej zależy od  - kolor chmur Wojciech Gawlik - Opt.Met.Badania Materiałów 3 - 2009/10

Rola interferencji i dyfrakcji w rozpraszaniu w rozpraszaniu Mie, interferują przyczynki światła rozprosz. przez różne części cząstki i dają zależność od rozmiaru cząstek natęż. światła rozproszonego średnica cząstek Wojciech Gawlik - Opt.Met.Badania Materiałów 3 - 2009/10

w rozpraszaniu na wielu małych cząstkach istotna dyfrakcja na indywidualnych cząstkach kąt minimum pierścieni przy dyfrakcji na okrągłych (sferycznych) obiektach o średnicy d: Przykład - badania aerozoli  Analiza obrazów dyfr. = ważna metoda pomiaru rozmiarów obiektów i struktur Wojciech Gawlik - Opt.Met.Badania Materiałów 3 - 2009/10

Elastometria defektoskopia analizator polaryzator przezroczysty przedmiot z naprężeniami obraz naprężeń defektoskopia badanie naprężeń, sprawdzanie modeli konstrukcji Wojciech Gawlik - Opt.Met.Badania Materiałów 3 - 2009/10

Koherencja światła lasera  zastos. do interferometrii laser speckle („cętki” laserowe) - wynik interferencji światła rozproszonego Interferometria plamkowa  nieniszcząca metoda badania powierzchni Wojciech Gawlik - Opt.Met.Badania Materiałów 3 - 2009/10

Przykłady zastosowań interferometrii laser speckle wizualizacja uszkodzeń i ruchu obiektów i powierzchni Wojciech Gawlik - Opt.Met.Badania Materiałów 3 - 2009/10

Prążki mory (moire pattern) mechanizm powstawania – interferencja fal świetlnych Zastosowania - np. ochrona zabytków: Wojciech Gawlik - Opt.Met.Badania Materiałów 3 - 2009/10

Materiały fotoniczne szkło BK-7 1. Materiały na standardowe elementy optyczne (soczewki, pryzmaty, okienka)  ważna transmisja/absorpcja i dyspersja szkło kwarcowe szafir CaF2 Wojciech Gawlik - Opt.Met.Badania Materiałów 3 - 2009/10

2. Materiały do manipulacji wiązkami świetlnymi Modulatory światła: wymuszona dwójłomność – efekty magneto- i elektro-optyczne Np. modulatory natężenia (AM) – substancja dwójłomna między skrzyż. polaryzatorami 1) efekt Faraday’a podłużne pole magnet. P B A L gdy poprzeczne pole B ef. Voigta (B2) (Cottona-Moutona) V = stała Verdeta 2) efekt Kerra poprzeczne pole elektr. L P E A K = stała Kerra gdy podłużne pole E - ef. Pockelsa (E) Wojciech Gawlik - Opt.Met.Badania Materiałów 3 - 2009/10

Modulatory częstości (FM) i fazy – najczęściej elektro-optyczne (EOM) (materiał dwójłomny bez polaryzatorów) Ważne modulatory akusto-optyczne (AOM) wykorzystujące efekt elastooptyczny (ciśnieniowa modyfikacja n ) Piezoceramiczny nadajnik ultradźwiękowy (PZT) wytwarza w krysztale falę zagęszczeń n (o częstości ), na której następuje ugięcie wiązki świetlnej. Ponadto ugięta wiązka ma częstość zmienioną o częstość fali zagęszczeń:      generator akust.  wiązka o częstości  PZT wiązka ugięta o częstości - lub +  modulatory akusto-optyczne umożliwiają: szybkie kierowanie wiązki laserowej w zadanym kierunku modulowanie częstości wiązki świetlnej      Wojciech Gawlik - Opt.Met.Badania Materiałów 3 - 2009/10

Optyczne materiały nieliniowe oddziaływania nieliniowe: n i  są też nieliniowymi funkcjami natężenia światła Podstawowe optyczne zjawiska nieliniowe 1. Generacja drugiej harmonicznej 2. Samoogniskowanie i deogniskowanie światła gdy n2>0, ośrodek nieliniowy działa jak soczewka skupiająca, gdy n2<0, ośrodek nieliniowy działa jak soczewka rozpraszająca, Wojciech Gawlik - Opt.Met.Badania Materiałów 3 - 2009/10

Pomiary nieliniowości optycznej metoda Z-scan n2 < 0 n2 > 0 w zależności od znaku n2 , nieliniowa próbka poddana jest samoogniskowaniu lub samo-deogniskowaniu i w zależności od swego położenia wzgl. ogniska wiązki laserowej, wywołuje charakterystyczne zmiany rejestrowanego natężenia światła Wojciech Gawlik - Opt.Met.Badania Materiałów 3 - 2009/10

Pojedyncze centra barwne/kropki kwantowe („niby-atomy”) kryształ 2x2x0.32 mm Wojciech Gawlik - Opt.Met.Badania Materiałów 3 - 2009/10

Technologia centrów NV syntetyczne diamenty a) HPHT (High Pressure High Temperature) b) CVD (Chemical Vapor Deposition)  cena, kontrola parametrów (koncentracja N: 6 –600 ppm, 1018–1020 cm–3, zawartość azotu - typ Ia lub IIa ) naświetlanie wiązką jonizującą (e, p, He+, ... @ 1.7–3 MeV, 1016–1018 cm – 2) *( [V] < 1022 cm-3 ) V N 17

Optyczna detekcja stanu spinowego prawdopodobieństwa absorpcji; |0 rozprasza 30% więcej fotonów niż |±1 |0 : stan jasny |±1 : stan ciemny 2 . 8 G H z absorpcja fluorescencja |MS=0> |MS= ±1> *Large oscillator strenght for NV- between ground and excited state : 0.12 (Room-temperature coherent coupling of single spins in diamond, Gaebel, Jelezko) * technika ODMR (Optically Detected Magnetic Resonance) – transfer populacji między podpoziomami spinowymi przez rezonansowe pole w, ESR (podwójny rezonans) – detekcja zmian absorpcji, fluorescencji, ... Wojciech Gawlik - Opt.Met.Badania Materiałów 3 - 2009/10 18

Nanomagnetometria G. Balasubramanian et al. Nature 455, 648 (2008) Wojciech Gawlik - Opt.Met.Badania Materiałów 3 - 2009/10

Kryształy fotoniczne = materiały z periodycznymi niejednorodnościami współczynnika załamania charakteryzują się „fotoniczną przerwą energetyczną” – obszarem „zabronionych” częstotliwości fal świetlnych Kryształy fotoniczne pozwalają na propagację dozwolonych modów promieniowania z b. małymi stratami i zmianę kierunku propagacji pod b. ostrymi kątami (co jest niemożliwe w standardowych światłowodach) Wojciech Gawlik - Opt.Met.Badania Materiałów 3 - 2009/10

Światłowody fotoniczne Przykładowe konstrukcje: dozwolone (a) i zabronione (b i c) mody promieniowania w światłowodzie fotonicznym (a) (b) (c) bardzo małe tłumienie, bardzo silne nieliniowości Wojciech Gawlik - Opt.Met.Badania Materiałów 3 - 2009/10

RHM (right-handed materials) Metamateriały, left-handed materials   jonosfera Re(n) = 0 RHM (right-handed materials) n > 0 LHM n < 0 seignetto-magnetyki Wojciech Gawlik - Opt.Met.Badania Materiałów 3 - 2009/10

 <0, n urojone  <0, n <0 Wojciech Gawlik - Opt.Met.Badania Materiałów 3 - 2009/10

Wojciech Gawlik - Opt.Met.Badania Materiałów 3 - 2009/10