METROLOGIA ELEKTRYCZNA

Slides:



Advertisements
Podobne prezentacje
Wzmacniacz operacyjny
Advertisements

POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH METROLOGIA Andrzej.
© IEn Gdańsk 2011 Technika fazorów synchronicznych Łukasz Kajda Instytut Energetyki Oddział Gdańsk Zakład OGA Gdańsk r.
WYKŁAD 1 Podstawowe pojęcia. Metrologia Metrologia jest nauka interdyscyplinarną z pogranicza techniki i prawa. Korzysta ona ze zdobyczy prawie wszystkich.
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI ZAKŁAD METROLOGII I SYSTEMÓW POMIAROWYCH METROLOGIA Andrzej Rylski.
Plan Czym się zajmiemy: 1.Bilans przepływów międzygałęziowych 2.Model Leontiefa.
 Wzmacniacz słuchawkowy służy do wzmacniania sygnału audio i przesyłania go do słuchawek. Ma zadanie zapobiegać niedoborowi mocy, która powoduje spadek.
Próba rozciągania metali Wg normy: PN-EN ISO :2010 Metale Próba rozciągania Część 1: Metoda badania w temperaturze pokojowej Politechnika Rzeszowska.
Metrologia III 3 Sensory indukcyjnościowe. Zagadnienia: 1. Podstawy fizyczne 2. Materiały magnetycznie miękkie i twarde 3. Półprzewodnikowe czujniki magnetyczne.
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI ZAKŁAD METROLOGII I SYSTEMÓW POMIAROWYCH METROLOGIA Andrzej Rylski.
MIESZACZE CZĘSTOTLIWOŚCI. Przeznaczenie – odbiorniki, nadajniki, syntezery częstotliwości Podstawowy parametr mieszacza = konduktancja (nachylenie) przemiany.
Niepewności pomiarowe. Pomiary fizyczne. Pomiar fizyczny polega na porównywaniu wielkości mierzonej z przyjętym wzorcem, czyli jednostką. Rodzaje pomiarów.
autor dr inż. Andrzej Rylski TECHNIKA SENSOROWA 6.Producenci sensorów i urządzeń do pomiaru temperatury.
 Głośnik – przetwornik elektroakustyczny (odbiornik energii elektrycznej) przekształcający prąd elektryczny w falę akustyczną. Idealny głośnik przekształca.
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH METROLOGIA Andrzej.
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH METROLOGIA Andrzej.
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH METROLOGIA ELEKTRYCZNA.
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH METROLOGIA ELEKTRYCZNA.
Badania elastooptyczne Politechnika Rzeszowska Katedra Samolotów i Silników Lotniczych Ćwiczenia Laboratoryjne z Wytrzymałości Materiałów Temat ćwiczenia:
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH METROLOGIA Andrzej.
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI ZAKŁAD METROLOGII I SYSTEMÓW POMIAROWYCH METROLOGIA Andrzej Rylski.
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH METROLOGIA Andrzej.
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH METROLOGIA Andrzej.
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH METROLOGIA Andrzej.
Autor dr inż. Andrzej Rylski MIERNICTWO PRZEMYSŁOWE 1. K A R T A P R Z E D M I O T U 2. Analiza metrologiczna modelu fizycznego toru pomiarowego.
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH MIERNICTWO PRZEMYSŁOWE.
Materiały pochodzą z Platformy Edukacyjnej Portalu Wszelkie treści i zasoby edukacyjne publikowane na łamach Portalu
T: Powtórzenie wiadomości z działu „Prąd elektryczny”
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH METROLOGIA Andrzej.
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH METROLOGIA Andrzej.
Miernictwo przemysłowe 3 Wybrane zagadnienia w procesie projektowania, kompatybilność, odporność na zakłócenia.
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI ZAKŁAD METROLOGII I SYSTEMÓW POMIAROWYCH METROLOGIA Andrzej Rylski.
Technika sensorowa 3 Sensory indukcyjnościowe. Technika sensorowa Zagadnienia: 1. Podstawy fizyczne 2. Materiały magnetycznie miękkie i twarde 3. Półprzewodnikowe.
WEZ 1 Wyniki egzaminu zawodowego absolwentów techników i szkół policealnych październik 2006 r.
M ETODY POMIARU TEMPERATURY Karolina Ragaman grupa 2 Zarządzanie i Inżynieria Produkcji.
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI ZAKŁAD METROLOGII I SYSTEMÓW POMIAROWYCH METROLOGIA Andrzej Rylski.
POMIARY ELEKTRYCZNE WIELKOŚCI NIEELEKTRYCZNYCH 1 Tytuł 2 Prowadzący 3 Prowadzone zajęcia dydaktyczne 4 Karta przedmiotu 5 Czujniki parametryczne-rezystancyjny.
Maszyny Elektryczne i Transformatory
Budżetowanie kapitałowe cz. III. NIEPEWNOŚĆ senesu lago NIEPEWNOŚĆ NIEMIERZALNA senesu strice RYZYKO (niepewność mierzalna)
Modulatory częstotliwości
Czy dzielnik napięcia może być „smart”? dr inż. Jerzy Nabielec Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej.
Dlaczego wybraliśmy zasilacz?  Chcieliśmy wykonać urządzenia, które będzie pamiątką po naszym pobycie w gimnazjum i będzie użyteczne.  Po zastanowieniu.
Rezystor (opornik). 1. Rezystor zmienia natężenie prądu płynącego w obwodzie 2. Zbudowany jest z drutu oporowego nawiniętego na ceramiczny wałek.
POLITECHNIKA RZESZOWSKA im
Test analizy wariancji dla wielu średnich – klasyfikacja pojedyncza
Wykład IV Zakłócenia i szumy.
3 Sensory indukcyjnościowe
Opracowanie wyników pomiaru
3 Sensory indukcyjnościowe
Pomiary wielkości elektrycznych i magnetycznych: RLC
Czujniki Czujnik - to urządzenie dostarczające informacji o pojawieniu się określonego bodźca, przekroczeniu pewnej wartości progowej lub o wartości.
POLITECHNIKA RZESZOWSKA im
Podstawy automatyki I Wykład /2016
Pomiary wielkości elektrycznych i magnetycznych: BH.
Wykład III Przetworniki A/C i C/A.
KOREKTOR RÓWNOLEGŁY DLA UKŁADÓW Z NIEMINIMALNOFAZOWYMI OBIEKTAMI Ryszard Gessing Instytut Automatyki, Politechnika Śląska Plan referatu Wprowadzenie.
Silniki bezszczotkowe prądu stałego
Wytrzymałość materiałów
Próg rentowności K. Bondarowska.
Podstawowe układy pracy wzmacniaczy operacyjnych
Tensor naprężeń Cauchyego
Wytrzymałość materiałów
Zygmunt Kubiak Wszystkie ilustracje z ww monografii Wyd.: Springer
Dwutranzystorowe stopnie wzmacniające
Porównywanie średnich prób o rozkładach normalnych (testy t-studenta)
Wytrzymałość materiałów
TRÓJFAZOWY KALIBRATOR MOCY &
Zakład Hydrotechniczny Rudna 26 styczeń 2017
Instytut Tele- i Radiotechniczny Instytut Elektrotechniki
Prąd przemienny.
Zapis prezentacji:

METROLOGIA ELEKTRYCZNA POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH METROLOGIA ELEKTRYCZNA Andrzej Rylski Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych, ul. W. Pola 2 35-959 Rzeszów, rylski @prz.edu.pl Pomiary stanów nieustalonych w obwodach RC, RL, i RLC, pomiar R, L, C metodą techniczną Strona tytułowa Czujniki magnetyczne Czujnik magnetyczny położenia wału korbowego Czujniki indukcyjnościowe Czujniki indukcyjne i kontaktronowe Przetwornik magneto-rezystancyjny AMR Przetwornik AMR Czujniki transduktorowe Kondensator, schemat zastępczy, modele Rezystor, schemat zastępczy, modele Cewka, schemat zastępczy, modele Pomiary stanów nieustalonych w obwodach RC Pomiary stanów nieustalonych w obwodach RLC Właściwości dynamiczne w dziedzinie czasu Przykład systemu Metoda techniczna pomiaru składowych impedancji Metoda techniczna poprawnego pomiaru prądu Metoda techniczna poprawnego pomiaru napięcia Multimetr M-3640 D Literatura

Czujniki magnetyczne OBIEKT OBIEKT Norma IEC/EN 60947-5-2 rozróżnia kilka stref wykrywania dla czujników zbliżeniowych. Znamionowa odległość wykrywania Sn Wartość standardowa wyznaczona dla produktu. Nie bierze pod uwagę rozrzutu parametrów produkcji, zmian temperatury otoczenia, napięcia zasilania, itd. Rzeczywista odległość wykrywania Sr Wartość zmierzona przy znamionowym napięciu zasilania (Un) znamionowej temperaturze otoczenia (Tn). Musi zawierać się pomiędzy 90% i 110% znamionowej odległości wykrywania Sn. Użyteczna odległość wykrywania Su Wartość zmierzona przy dopuszczalnych granicach zmian napięcia zasilania (Un) i temperatury otoczenia (Tn). Musi zawierać się pomiędzy 90% i 110% rzeczywistej odległości wykrywania Sr. Robocza odległość wykrywania Sa To obszar w którym urządzenie pracuje . Zawiera się w granicach od 0 do 81 % znamionowej odległości wykrywania Sn. OBIEKT

Obiekt poruszający się Czujniki magnetyczne XS8 E - 26 x 26 (Sn = 15 mm) XS8 C - 40 x 40 (Sn = 25 mm) XS8 D - 80 x 80 (Sn = 60 mm) XS6 12 - 12 (Sn = 4 mm) XS6 18 - 18 (Sn = 8 mm) XS6 30 - 30 (Sn = 15 mm) Programowanie: - pierwsze wciśnięcie przycisku - czujnik uczy się otoczenia - drugie wciśnięcie przycisku - czujnik uczy się wykrywania pozycji obiektu XS8 Montaż zagłębiony Montaż zagłębiony z tłem Montaż niezagłębiony Obiekt zbliżający się do czoła czujnika Obiekt poruszający się poprzecznie do czoła czujnika

Czujnik magnetyczny położenia wału korbowego Cinquecento 900

Czujniki indukcyjnościowe Gdzie: A jest powierzchnią przekroju rdzenia.

Czujniki indukcyjne i kontaktronowe Rys 10.21 Indukcyjny czujnik położenia zębów przekładniowych ( "czujnik wychwytujący - magnetic pickup"). Rys. 10.20 Indukcyjny czujnik rotacji z magnesem stałym Rys 10.23 Zestyki kontaktronowe: strefy przełączania dla magnesu równoległego do osi czujnika.

Przetwornik magneto-rezystancyjny AMR Przetworniki AMR Magnetorezystory anizotropowe (AMR) są w ogólności wykorzystywane do pomiarów pól magnetycznych w średnim ich zakresie, do 200 mT. Efekt magnetorezystancji opisany został już w 1857 roku przez W. Thomsona Rys.10.13 Działanie czujnika opartego na efekcie magnetorezystancji

Przetwornik AMR (10.48) R1 = R3 = R0 + DR0 i R2 = R4 = R0 - DR0 Rys. 10.14 Przetwornik AMR, sposób linearyzacji (10.50) Rys. 10.15 Przetwornik AMR w konfiguracji pomiarowej mostka Wheatstona

Czujniki transduktorowe

Kondensator, schemat zastępczy, modele str.185 [5] Rys. 8.1. Symbol kondensatora RX LX CX Rys. 8.3. Pojemnościowa gałąź wzorcowa w połączeniu równoległym CX - pojemność idealna, RX - rezystancja strat, LX - indukcyjność rozproszenia Rys. 8.2. Elektryczny schemat zastępczy kondensatora Rys. 8.4. Pojemnościowa gałąź wzorcowa w połączeniu szeregowym

Rezystor, schemat zastępczy, modele Rys. 8.5. Element rezystancyjny - symbol RX LX CX Rys. 8.7. Schemat rezystancyjnej zmiennoprądowej gałęzi wzorcowej RX - rezystancja podstawowa, LX - indukcyjność szczątkowa CX - pojemność szczątkowa Rys. 8.6. Elektryczny schemat zastępczy rezystora w układach zmienno prądowych

Cewka, schemat zastępczy, modele Rys. 8.8. Symbol cewki indukcyjnej Rys. 8.10. Schemat gałęzi wzorcowej do równoważenia mostka Rys. 8.9. Elektryczny schemat zastępczy cewki

Pomiary stanów nieustalonych w obwodach RC Układ całkujący Układ różniczkujący LabVIEW widok ekranu

Pomiary stanów nieustalonych w obwodach RLC Układ rezonansowy RLC LabVIEW widok ekranu

Właściwości dynamiczne w dziedzinie czasu Rys.9.2. Odpowiedź układu na skok jednostkowy x(t) = 1(t) – skok jednostkowy sygnału wejściowego - stała czasowa T-okres drgań własnych a(t) – sygnał wyjściowy f-częstotliwość drgań własnych Rys.9.3. Charakterystyka częstotliwościowa a=f(f) fd- dolna częstotliwość graniczna fg- górna częstotliwość graniczna

Przykład systemu Układ 1 porównania Układ 2 porównania Układ n porównania Wzorzec 1 Wzorzec 2 Wzorzec n Obiekt badany dane wartości ekstremalnych dobry/zły źródło sygnałów diagnostycznych procesor

Metoda techniczna pomiaru składowych impedancji 2 1 V generator A Zx Rys. 8.11. Układ metody technicznej pomiaru impedancji

Metoda techniczna poprawnego pomiaru prądu w pomiarze impedancji dR[%] RA[W] DZpi - wartość poprawki w metodzie dokładnego pomiaru prądu, ZA - impedancja amperomierza, RA - rezystancja amperomierza Rys. 8.12. Wpływ błędu metody poprawnie mierzonego prądu w pomiarach rezystancji cewek indukcyjnych, XL =dowolna wartość, R=1[W] dR[%] RA[W] 2 1 V generator A Zx Rys. 8.13. Wpływ błędu metody dokładnego pomiaru prądu na pomiar rezystancji kondensatora Xc = dowolna wartość, R=100000W

Metoda techniczna poprawnego pomiaru napięcia w pomiarze impedancji DZpu - wartość poprawki w metodzie dokładnego pomiaru napięcia, ZV - impedancja woltomierza, RV - rezystancja woltomierza Rys. 8.14. Wpływ błędu metody poprawnie mierzonego napięcia na błąd pomiaru rezystancji cewki gdy X=10, 100[W], R=1, 10[W] Rys. 8.15. Wpływ błędu metody poprawnie mierzonego napięcia na błąd pomiaru indukcyjności cewki X=10, 100[W], R=1, 10[W]

Multimetr M-3640 D 1, 2, 3, 4, 5, 6 – przełączniki funkcji 7 złącze do badania tranzystorów 9 obrotowy przełącznik zakresu i funkcji 11 złącze do pomiaru prądu 0,2 i 20A 13 złącze do pomiaru napięcia i rezystancji 15, 16 wskaźnik analogowy 8 złącze do pomiaru pojemności 10 złącze do pomiaru prądu (max 20mA) 12 złącze wspólne 14 LCD ( 3 1/2 cyfry, max 1999z )

Multimetr M-3640 D FUNCTION RANGE ACCURACY RESOLUTION DC VOLTAGE 200 mV 2 V 20 V 200 V  0,3 % of rdg + 1 dgt 100 V 1 mV 10 mV 100 mV 1000 V 0,5 % of rdg + 1 dgt 1V AC (True rms) 0,8 % of rdg + 3 dgts 1,5 % of rdg + 5 dgts 750 V 1,2 % of rdg + 3 dgts 1 V RESIST -ANCE 200  2 K 20 K 200 K 2 M 0,5 % of rdg + 3 dgts 0,1  1  10  100  1 K 20 M 1,0 % of rdg + 2 dgts 10 K CURRENT 0,2 mA 2 mA 20 mA 0,1 A 1 A 10 A 200 mA 1,2 % of rdg + 1 dgt 100 A 20 A 2,0 % of rdg + 5 dgts 100 mA

Multimetr M-3640 D FUNCTION RANGE ACCURACY RESOLUTION AC CURRENT 0,2 mA 2 mA 20 mA 1,0 % of rdg + 3 dgts 0,1 A 1 A 10 A 200 mA 1,8 % of rdg + 5 dgts 100 A 20 A 3,0 % of rdg + 5 dgts 10 mA TEMPERA-TURE -40C~200C 200C~1200C 3,0 % of rdg + 2 dgts dB 200mV 20V 3,0 of rdg + 5 dgts 0,1dB FREQUENCY 2kHz 20kHz 200kHz 1,0 % of rdg + 1 dgt 1Hz 10Hz 100Hz 1MHz 1kHz *2MHz *20MHz 10kHz

Zakładam równomierny rozkład błędów pomiaru Multimetr M3640 Oblicz wartość błędu bezwzględnego i względnego oraz zapisz wynik pomiaru rezystancji multimetrem o następujących danych: Rn = 200W, niedokładność wskazań 0,5% of rdg +3dgts, wartość odczytana R=163,5 W. Oblicz wartość niepewności oraz zapisz wynik pomiaru rezystancji multimetrem o następujących danych: Rn = 200W, niedokładność wskazań 0,5% of rdg +3dgts, wartość odczytana R=163,5 W. Rn= 200 W R = 163,5 W Nn=2000z dM= 0,5% DA =+3 z uB[W] = ?, R[W] = ? Rn= 200 W R = 163,5 W Nn=2000z dM= 0,5% DA =+3 z d[%] = ?, D[W] = ?, R[W] = ? Zakładam równomierny rozkład błędów pomiaru

Literatura Literatura: [1]. Chwaleba A., Czajewski J., Przetworniki pomiarowe wielkości fizycznych, oficyna wydawnicza Politechniki Warszawskiej 1993. [2]. Chwaleba A., Poniński M., Siedlecki A., Metrologia elektryczna WNT Warszawa 1994. [3]. Czajewski J., Poński M., Zbiór zadań z metrologii elektrycznej WNT Warszawa 1995. [4]. Sydenham P.H., Podręcznik metrologii, WKŁ Warszawa 1990. [5].Rylski A., Metrologia II prąd zmienny. OWPRz Rzeszów 2006