POMIARY ELEKTRYCZNE WIELKOŚCI NIEELEKTRYCZNYCH 1 Tytuł 2 Prowadzący 3 Prowadzone zajęcia dydaktyczne 4 Karta przedmiotu 5 Czujniki parametryczne-rezystancyjny.

Slides:



Advertisements
Podobne prezentacje
Przetworniki pomiarowe
Advertisements

Wzmacniacz operacyjny
Miernictwo Elektroniczne
W1. GENERATORY DRGAŃ SINUSOIDALNYCH
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH METROLOGIA Andrzej.
© IEn Gdańsk 2011 Technika fazorów synchronicznych Łukasz Kajda Instytut Energetyki Oddział Gdańsk Zakład OGA Gdańsk r.
Przekształcanie jednostek miary
Równowaga chemiczna - odwracalność reakcji chemicznych
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI ZAKŁAD METROLOGII I SYSTEMÓW POMIAROWYCH METROLOGIA Andrzej Rylski.
1 Dr Galina Cariowa. 2 Legenda Iteracyjne układy kombinacyjne Sumatory binarne Sumatory - substraktory binarne Funkcje i układy arytmetyczne Układy mnożące.
Plan Czym się zajmiemy: 1.Bilans przepływów międzygałęziowych 2.Model Leontiefa.
Pomiary Liniowe; tradycyjne i współczesne
Fizyka współczesna: Temat 8: Metody pomiaru temperatury Anna Jonderko Wydział Górnictwa i Geoinżynierii Kierunek Górnictwo i Geologia Rok I - studia magisterskie.
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI ZAKŁAD METROLOGII I SYSTEMÓW POMIAROWYCH METROLOGIA Andrzej Rylski.
MIESZACZE CZĘSTOTLIWOŚCI. Przeznaczenie – odbiorniki, nadajniki, syntezery częstotliwości Podstawowy parametr mieszacza = konduktancja (nachylenie) przemiany.
Ekonometria stosowana Autokorelacja Piotr Ciżkowicz Katedra Międzynarodowych Studiów Porównawczych.
Niepewności pomiarowe. Pomiary fizyczne. Pomiar fizyczny polega na porównywaniu wielkości mierzonej z przyjętym wzorcem, czyli jednostką. Rodzaje pomiarów.
autor dr inż. Andrzej Rylski TECHNIKA SENSOROWA 6.Producenci sensorów i urządzeń do pomiaru temperatury.
Metrologia III 2 Pomiary temperatury.. Program: 1.Jednostki, podział widma fal elektromagnetycznych 2.Cieczowe, bimetaliczne, termopary 3.Scalone czujniki.
 Głośnik – przetwornik elektroakustyczny (odbiornik energii elektrycznej) przekształcający prąd elektryczny w falę akustyczną. Idealny głośnik przekształca.
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH METROLOGIA Andrzej.
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH METROLOGIA Andrzej.
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH METROLOGIA ELEKTRYCZNA.
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH METROLOGIA ELEKTRYCZNA.
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH METROLOGIA Andrzej.
Doświadczenie Michelsona i Morleya Monika Wojciechowska II stopnień ZiIP Grupa 3.
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI ZAKŁAD METROLOGII I SYSTEMÓW POMIAROWYCH METROLOGIA Andrzej Rylski.
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH METROLOGIA Andrzej.
Funkcja liniowa Przygotował: Kajetan Leszczyński Niepubliczne Gimnazjum Przy Młodzieżowym Ośrodku Wychowawczym Księży Orionistów W Warszawie Ul. Barska.
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH METROLOGIA Andrzej.
Fizyczne metody określania ilości pierwiastków i związków chemicznych. Łukasz Ważny.
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH METROLOGIA Andrzej.
Autor dr inż. Andrzej Rylski MIERNICTWO PRZEMYSŁOWE 1. K A R T A P R Z E D M I O T U 2. Analiza metrologiczna modelu fizycznego toru pomiarowego.
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH MIERNICTWO PRZEMYSŁOWE.
Materiały pochodzą z Platformy Edukacyjnej Portalu Wszelkie treści i zasoby edukacyjne publikowane na łamach Portalu
Zjawisko fotoelektryczne zewnętrzne i wewnętrzne
T: Powtórzenie wiadomości z działu „Prąd elektryczny”
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH METROLOGIA Andrzej.
Metody Analizy Danych Doświadczalnych Wykład 9 ”Estymacja parametryczna”
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH METROLOGIA Andrzej.
Miernictwo przemysłowe 3 Wybrane zagadnienia w procesie projektowania, kompatybilność, odporność na zakłócenia.
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI ZAKŁAD METROLOGII I SYSTEMÓW POMIAROWYCH METROLOGIA Andrzej Rylski.
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI ZAKŁAD METROLOGII I SYSTEMÓW POMIAROWYCH METROLOGIA Andrzej Rylski.
Własności elektryczne materii
# Analiza cech taksacyjnych drzewostanów przy wykorzystaniu technologii LIDAR 1 15 Sep 2010 Analiza cech taksacyjnych drzewostanów przy wykorzystaniu technologii.
Pętla synchronizacji fazowej (PLL - Phase Locked Loop)
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH METROLOGIA ELEKTRYCZNA.
Miernictwo przemysłowe 1 Tytuł 2 Czujniki parametryczne-rezystancyjny suwakowy, 3 -tensometryczny, 4 -bimetaliczny, -Burdona 5 -indukcyjnościowy transformatorowy.
M ETODY POMIARU TEMPERATURY Karolina Ragaman grupa 2 Zarządzanie i Inżynieria Produkcji.
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI ZAKŁAD METROLOGII I SYSTEMÓW POMIAROWYCH METROLOGIA Andrzej Rylski.
Temat 10: Metody pomiaru temperatury Battulga Naranbaatar Wydział Górnictwa i Geoinżynierii Kierunek Górnictwo i Geologia Rok I - studia magisterskie Grupa.
Budżetowanie kapitałowe cz. III. NIEPEWNOŚĆ senesu lago NIEPEWNOŚĆ NIEMIERZALNA senesu strice RYZYKO (niepewność mierzalna)
Modulatory częstotliwości
Technika sensorowa Tytuł
METROLOGIA ELEKTRYCZNA
Wykład IV Zakłócenia i szumy.
Systemy wizyjne - kalibracja
Opracowanie wyników pomiaru
Pomiary wielkości elektrycznych i magnetycznych: RLC
POLITECHNIKA RZESZOWSKA im
Podstawy automatyki I Wykład /2016
Elementy fizyki kwantowej i budowy materii
Silniki bezszczotkowe prądu stałego
Podstawowe układy pracy wzmacniaczy operacyjnych
Sensory i ich interfejsy
Prowadzący: dr inż. Adam Kozioł Temat:
Zygmunt Kubiak Wszystkie ilustracje z ww monografii Wyd.: Springer
Dwutranzystorowe stopnie wzmacniające
Prąd przemienny.
Zapis prezentacji:

POMIARY ELEKTRYCZNE WIELKOŚCI NIEELEKTRYCZNYCH 1 Tytuł 2 Prowadzący 3 Prowadzone zajęcia dydaktyczne 4 Karta przedmiotu 5 Czujniki parametryczne-rezystancyjny suwakowy, 6 -tensometryczny, 7 -bimetaliczny, -Burdona 8 -indukcyjnościowy transformatorowy 9 -chromatograficzny 10 Czujniki generacyjne: -termopara, 11 -piezoelektryczne 12 -Hallotronowe 13 Układy pomiarowe: -przyrządy do pomiaru RLC, 14 -mostki niezrównoważone prądu zminnego 15 -parametry pracy wybranych mostków 16 Niezrównoważony mostek Wiena i transformatorowy 17 Mostek niezrównoważony trójprzewodowy z ekranem 18 Funkcja przetwarzania mostka dla różnych sposobów włączenia generatora i woltomierza 19 Dwuparametrowy pomiar z modulacją kwadraturową w mostku Wiena 20 Dwuparametrowy mostek, błędy wzorów uproszczonych 21 Dwuparametrowy mostek, wzory uproszczone 22 Dwuparametrowy mostek – funkcja przetwarzania Andrzej Rylski Politechnika Rzeszowska Zakład Metrologii i Systemów Pomiarowych ul. W. Pola Rzeszów

1.Prowadzący

1.Prowadzone zajęcia dydaktyczne

2.Karta przedmiotu

plug potentiomete r cursor spiral cell case Czujniki parametryczne. Rys.1. Czujnik rezystancyjny suwakowy

Rys.1. Czujnik rezystancyjny tensometryczny Czujniki parametryczne.

Rys.3. Czujnik bimetaliczny Czujniki parametryczne.

Principle of an inductive accelerometer Czujniki parametryczne.

Rys.. Czujnik chromatograficzny Czujniki parametryczne.

Termopary Termopara WoltomierzAmperomierz Gdzie: dE = generowane napięcie [V] dT = różnica temperatur [K]  = współczynnik Thomson’a [V/°C] np.: Cu 2,2  V/°C Fe –8,4  V/°C Napięcie Thomson’a Efekt Peltier’a Efekt Seebeck’a Czujniki generacyjne.

F = m  (1) F = inertia force m = mass  = the accleration Fig 5.3: The principle of the accelerometer The equation of the movement is given by the equation (2) (2) k = the stiffness of the spring = the damping coefficient The damping coefficient of the moving element is due to the viscosity of the ambient conditions. In a stable state, the relation between displacement x and acceleration  is (equation 3) (3) The sensitivity of the accelerometer x /  is proportional to (m / k) The resonance frequency of the system is given by the equation (4): (4)

general principle of piezoelectric accelerometer piezo accelerometer with axial compression with screw Czujniki generacyjne.

Main Models of accelerometers Principles of détection Recommanded range of frequencies Hz 0, With current of Foucault With resonator Servo –controlled (electrodynamic) Electromagnetic Electrostatic Optic Piezoélectric(quartz or céramics) Piezotransistor Capacitive bridge Bridge of Piezoresistive Gauges Bridge of resistives gauges

INCLINAISON ECONOMIC INCLINOMETER MODEL ME APPLICATIONS: angle measure, deformation control, stabilization, regulation, safety. SPECIFICATIONS: 3 ranges : +/- 30°, +/- 70°, +/- 80° Accuracy : 0,2 % of the range Transversal error : < 1 % Small size,Low cost. MODELS Case ACase B SPECIFICATIONSME 26410ME 26420ME Range (deg.)+/- 30+/- 70+/- 80 Power supply (V/ma)5/1 Sensitivity (mV/deg.) Resolution (deg.)0.01 Non Linearity (% range) Offset (V)2.5 +/- 0.1 Transverse sensitivity (% range)< 1 Output impedance (KOhm)10 Time rise (sec)0.3 Thermal Zero shift (deg./°C) Thermal Span shift (deg./°C) Operating temperature-40 to +85°C Maximum Shock100 g ; 11 ms ProtectionIP 65 Weight (g) Main Models of accelerometers QAT160/T185 Q-Flex® Model 2412Three Axis Analog Accelero meter Module

I t B VHVH Czujniki generacyjne.

Układy i przyrządy współpracujące z przetwornikami

Mostki niezrównoważone prądu przemiennego Rys.9.1 Schemat mostka niezrównoważonego prądu przemiennego Rys.9.2 Zależność napięcia nierównowagi mostka w funkcji zmian impedancji Z1 w mostku Z1[]Z1[] U[V] Z 1 = Z 2 = Z 3 = Z 4 =100[  ], U z =1[V] U z =U m sin  t, Z v =  (9.1) (9.2) Iz=Im sinwt Zv=  (9.3) (9.4)

Parametry pracy wybranych mostków Tabela 9.A. Parametry pracy wybranych mostków impedancje zmiennekierunek zmian impedancjinapięcie nierównowagi mostka gdy Z 1  Z 2  Z 3  Z 4 Z1Z1 (+, -)+1 (9.5) Z2Z2 (+, -) [9.6) Z 1, Z 3 Z 1 (+, -), Z 3 (+, -)0 Z 1 (+, -), Z 3 (-,+)+2 (9.9) Z 1, Z 4 Z 1 (+, -), Z 4 (+, -)+2 (9.11) Z 1 (+, -), Z 4 (-,+)0 Z 1, Z 2, Z 3 Z 1 (+, -), Z 2 (+,-), Z 3 (+, -)+1+1 (9.13) Z 1, Z 2, Z 3 Z 1 (+, -), Z 2 (+,-), Z 3 (-,+)+3+3 (9.14) Z 1, Z 2, Z 3, Z 4 Z 1 (+,-), Z 2 (+,-), Z 3 (+,-), Z 4 (+,-)0 Z 1, Z 2, Z 3, Z 4 Z 1 (+,-), Z 2 (-,+), Z 3 (-,+), Z 4 (+,-)+4+4 (9.15)

Niezrównoważony mostek Wiena i transformatorowy Rys Układ pracy mostka impedancyjnego z woltomierzem wektorowym Rys Mostek niezrównoważony transformatorowy z pomiarem składowych R,X impedancji Zx=R+jX

Mostek niezrównoważony trójprzewodowy z ekranem Rys Mostek niezrównoważony trójprzewodowy z ekranem Z2Z4  Z1 Z3

Rys.1. Schemat mostka a. generator włączony w węzły A-C, woltomierz włączony w węzły B-D b. generator włączony w węzły B-D, woltomierz włączony w węzły A-C Wielowątkowa analizę warunków równowagi opisali Szadkowski np.[3], Miczulski w monografii [4 ] A B C D A B C D Funkcja przetwarzania mostka dla różnych sposobów włączenia generatora i woltomierza

a.b. A B C D A B C D Rys. 2 Mostek Wiena : a. generator włączony w węzeł połączenia dwóch gałęzi RC i węzeł połączenia dwóch gałęzi R - zasilanie symetrycznych par ramion mostka, woltomierz włączony w węzły połączenia gałęzi RC i R b. generator włączony w węzły połączenia gałęzi RC i R - zasilanie niesymetrycznych par ramion mostka, woltomierz włączony w węzeł połączenia dwóch gałęzi RC i węzeł połączenia dwóch gałęzi R Dwuparametrowy pomiar z modulacją kwadraturową w mostku Wiena

pod warunkami, że impedancje w gałęziach są w przybliżeniu sobie równe B A D C Rys. 3 Wykres niedokładności obliczeń wzorami przybliżonymi :1-UR [14] i UX [15] dla jednoczesnych odstrojeń rezystorów R1 i R3 w trzech przedziałach: a - (0,01 - 0,1) [%], b - (0,1 - 1)[%], c - (1 - 10) [%]  R [%]  U[%] Dwuparametrowy mostek, błędy wzorów uproszczonych

Dwuparametrowy mostek, wzory uproszczone

Sposoby niezależnego jednoczesnego pomiaru dwóch rezystancji: Rezystory zmienne: R1 i R3, Ux=f(  R1), UR=f(  R3), Rezystory zmienne: R1 i R4, Ux=f(  R1), UR=f(  R4), Rezystory zmienne: R2 i R3, Ux=f(  R2), UR=f(  R3), Rezystory zmienne: R2 i R4, Ux=f(  R2), UR=f(  R4), Dwuparametrowy mostek – funkcja przetwarzania

+ R1R1 R2R2 R C R C U wy U we -  k u =1(4.2)  1 +  2 =2n  (4.3) Rys Schemat układu generatora z mostkiem Wiena zakres częstotliwości 0,1 Hz ¸ 1 MHz. współczynnikiem zniekształceń nieliniowych (poniżej 0,1%) dużą stabilnością częstotliwości (1,5 × 10-4 ¸2,5 ×10-3). Układy przetworników x/f Generator Hartleya. Układ został wynaleziony przez Ralpha Hartleya w 1915 roku.