Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

AIRPORT TERMINAL BUILDING FRP-REINFORCED GLULAM ROOF STRUCTURE

Podobne prezentacje


Prezentacja na temat: "AIRPORT TERMINAL BUILDING FRP-REINFORCED GLULAM ROOF STRUCTURE"— Zapis prezentacji:

1 AIRPORT TERMINAL BUILDING FRP-REINFORCED GLULAM ROOF STRUCTURE
Silesian University of Technology Faculty of Civil Engineering Department of Structural Engineering AIRPORT TERMINAL BUILDING FRP-REINFORCED GLULAM ROOF STRUCTURE ENGINEERING DIPLOMA author: Agnieszka KNOPPIK supervisor: PhD SE Marcin GÓRSKI

2 Aim of project The aim of project was to design a roof structure of passenger terminal building for Katowice International Airport made of FRP-reinforced glue-laminated timber frame system taking into consideration operation of the building under standard operation conditions.

3 Range of project 1. Architectural concept of terminal building
2. Design models of roof structure beam model (simplified) surface model (detailed) 3. Composition of loads and combinations of loads under standard operation conditions 4. Stength & stability analysis of roof structure analytic method (simplified) finate element method (detailed) 5. Spatial stiffening of roof structure 6. Constructional drawings of main structure and structural elements

4 Requirements 1. Legal requirements 2. Technical requirements
1. Project basis Requirements 1. Legal requirements aviation law building law 2. Technical requirements complex development of apron and terminal 3. Architectural requirements functional program

5 2. Review of existing structures
Passenger terminals Terminal 3 at Beijing Capital International Airport, China 986,000 m2 of total floor area 3.5 km long 5 floors 50 mln passengers/year structure – standard steel modules Teminal at Chek Lap Kok Airport, Hong Kong 515,000m2 of total floor area 1.2km long structure – RC frames, steel vaulted frames, waffle floor New Teminal 2 a Mexico City International Airport, Mexico 350,000 m2 of total floor area RC with masonry filling

6 Glulam hall structures
2. Review of existing structures Glulam hall structures arches truss solid domes ribbed net frames column - beam curved

7 My architectural concept
3. Structural solutions Architecture ground floor first floor My architectural concept

8 Structure Load-bearing structure 3. Structural solutions
B x L = 42.9 x m; H ≈ 20 m Load-bearing structure FRP-reinforced glulam cable-stayed frames every 6 / 9 m.

9 Static model – beam model
4. Loads Static model – beam model arch elements replaced with sequence 0f straight segments flexible supports replacing cables Rough assesment of internal forces distribution.

10 Dead load case A - max. dead load case B - min. dead load
4. Loads Dead load case A - max. dead load case B - min. dead load self load of roof covering self load of structure installations roof bracing

11 Wind load PN-77-B-02011 qk = 550 Pa (account for thrust)
4. Loads Wind load PN-77-B-02011 qk = 550 Pa (account for thrust) Ce = 1.2 (height-dependent) β = 1.8 (initial assumption)

12 Wind load case D wind from the right case C wind from the left Case E
4. Loads Wind load case D wind from the right case C wind from the left Case E wind from the front

13 Snow load EN 1991-1-3 sk = 0.9 kN/m (zone II)
4. Loads Snow load EN sk = 0.9 kN/m (zone II) Ce = 0.8 (windswept topography) Ct = 0.77 (glass roof covering)

14 Snow load case F balanced situation case G unbalanced situation 1
4. Loads Snow load case F balanced situation case G unbalanced situation 1 case H unbalanced situation 2

15 Temperature EN 1991-1-5 Temperature difference
4. Loads Temperature EN Temperature difference case I - summer ΔT = 200C case J - winter ΔT = -200C difference between FRP and glulam: thermal expansion coefficients heat transfer changing cross-sections : different uniform temperature moisture

16 always A / B + optionally C / D / E + F / G / H + I / J
5. Combinations of loads Combinations of loads Fundamental combination (ULS) Characteristic combination (SLS) always A / B + optionally C / D / E + F / G / H + I / J dead load wind load snow load temperature

17 Envelopes of internal forces
5. Combinations of loads Envelopes of internal forces Bending moments Shear forces Normal forces

18 FRP –reinforced glulam
Moment curvature model – similar to reinforced concrete linear-elastic-ideal-plastic relationship within cross-section linear-elastic behaviour of FRP Bernoulli hypothesis applied shear strength of bond between FRP and timber greater than shear strength of timber along fibres ideally stiff bond, so εw = εf substitute section method for stiffness evaluation influence of glue on stiffness neglected, Eglue = Etimber

19 Mechanism of action. Modes of failure
7. ULS analytic Mechanism of action. Modes of failure

20 Ultimate Limit States bending with axial tension
7. ULS analytic Ultimate Limit States bending with axial tension bending with axial compression (horizontal elements) bending with axial compression (vertical elements)

21 Ultimate Limit States strength condition at bent segments
7. ULS analytic Ultimate Limit States strength condition at bent segments shear strength effective geometrical data ecountered

22 Ultimate moment effective height: h = h0 a c e h = h0 – hp b d f
7. ULS analytic Ultimate moment effective height: h = h0 a c e h = h0 – hp b d f neutral axis location: hn = hn(hf, E0, Ef, hp) a b hn = hn(hf, E0, Ef, hp, fm, fc) c d hn = hn(hf, E0, Ef, hp, fm, fc, εc) e f modification factor: kM = kM(hn, hf, E0, Ef) a b kM = kM(hn, hf, hc, E0, Ef) c d e f

23 ULS control Control sections: bending + compression
7. ULS analytic ULS control Control sections: bending + compression Control sections: shear

24 Static model – surface model
8. ULS FEM Static model – surface model

25 Static model – surface model
8. ULS FEM Static model – surface model

26 Dynamic wind action. Modal analysis
8. ULS FEM Dynamic wind action. Modal analysis assumption β = 1.8 satisfactory! n = 2.94 β = 1.42 n = 4.07 β = 1.41 n = 1.34 β = 1.41 n = 0.45 β = 1.51 n = 1.28 β = 1.41 n = 1.90 β = 1.41

27 8. ULS FEM Ultimate stress Model 4. Second column introduced. Satisfactory stress distribution Model 3. No cables. Little change in stress distribution Model 1: High concetration of stresses at the internal support Model 2. Increased stiffness of cables. Little change in stress distribution

28 Ultimate stress Reinforcement applied:
8. ULS FEM Ultimate stress Reinforcement applied: support area - 3 FRP strips h = 1.8mm, Ef = 300GPa along top fibres sag area – 1 FRP strip h = 1.4mm, Ef = 300GPa along bottom fibres 3 strips σt > 90% ft,0,g,d 2 strips σt > 80% ft,0,g,d 1 strip σt > 70% ft,0,g,d Model 5. Scheme

29 Serviceability Limit States
9. SLS Serviceability Limit States instanteneous deflection final deflection stiffness increase kEI ∙ EI kEI = kEI(hf, hp) negligible effects of FRP creep ufin = uinst (1 + kdef) ufin ≤ ufin,net

30 Serviceability Limit States
9. SLS Serviceability Limit States Deformation of girder under characteristic combination of loads Horizontal displacements Vertical displacements

31 Serviceability Limit States
9. SLS Serviceability Limit States Control sections section I-I uins = 4.1cm kEI = 1.0 ufin = 6.2cm > unet = 5.0cm section II-II uins = 12.0cm kEI = 1.1 ufin = 16.0cm > unet = 10.0cm

32 Serviceability Limit States
9. SLS Serviceability Limit States Horizontal displacements Vertical displacements + reinforcement in sag area (3 FRP strips h = 1.8mm, Ef = 300GPa)

33 Serviceability Limit States
9. SLS Serviceability Limit States Control sections section I-I uins = 3.1cm kEI = 1.0 ufin = 4.6cm < unet = 5.0cm most unfavourable case A+H 1 strip kEI = 1.10 u1s = 6.2cm 2 strips kEI = 1.19 u2s = 6.7cm 3 strips kEI = 1.26 u3s = 7.1cm section II-II uins = 8.4cm kEI = 1.25 ufin = 9.9cm < unet = 10.0cm

34 Bracings wind truss bracing
10. Spatial stiffening Bracings wind truss bracing located horizontally between adjacent frames transfer wind load to foundations located horizontally between adjacent frames protect nodes of compressed elements against transverse movement

35 Wind truss transverse wind truss every 30m
10. Spatial stiffening Wind truss transverse wind truss every 30m longitudinal wind truss along outer edge of roof wall truss

36 10. Spatial stiffening Roof wind trusses Longitudinal truss designed for slenderness conditions: compressed elements λ ≤ 250 tensiled elements λ ≤ 350 Transverse truss designed for uniformly distributed load q

37 10. Spatial stiffening Wall trusses Wall truss being a component of transverse roof truss designed for internal forces under q load Wall truss between external columns designed for reaction from girder on columns R = 23kN

38 10. Spatial stiffening Vertical bracing

39 Vertical bracing Designed for concentrated load Q Q = q ∙ a
10. Spatial stiffening Vertical bracing Designed for concentrated load Q Q = q ∙ a

40 Bolted joints (steel-to-timber joint)
10. Spatial stiffening Bolted joints (steel-to-timber joint) Thickness of steel plate t = t(d, fuk) Required number of screws in joint per element R = R(fh,1,d, t1, d, Myd) Number of connectors influences minimum width of connected element!

41 Supports Support of girder on RC deck – column support
10. Spatial stiffening Supports Support of girder on RC deck – column support Support of girder on RC deck – pivot support Reaction from girder V clamp stength of steel bearing and column Reaction from girder V clamp stength of rocker/hull and roller

42 Glued joints shear stress tensile stress across fibres
10. Spatial stiffening Glued joints shear stress tensile stress across fibres

43 CONCLUSIONS The effect of reinforcement on strength and stiffness of glued-laminated timber elements Comparison of analytic method and final element method

44 Articles Books Bibliography 9 Polish works 21 foreign works
Ajdukiewicz A., Mames J.: Konstrukcje z betonu sprężonego. Polski Cement Sp. z o.o., Kraków (2004) Flaga A.: Inżynieria wiatrowa. Podstawy i zastosowania. Wydawnictwo “Arkady”, Warszawa (2008) Jasieńko J.: Połączenia klejowe i inżynierskie w naprawie, konserwacji i wzmacnianiu zabytkowych kontrukcji drewnianych. Dolnośląskie Wydawnictwo Edukacyjne, Wrocław (2003) Łubiński M., Filipowicz A., Żółtowski W.: Konstrukcje metalowe. Część I: Podstawy projektowania, wydanie 2zm. Wydawnictwo ``Arkady'', Warszawa (2000) Masłowski E., Spiżewska D.: Wzmacnianie konstrukcji budowlanych. Wydawnictwo ``Arkady'', Warszawa (2000) Michniewicz Z.: Konstrucke drewniane. Wydawnictwo “Arkady”, Warszawa (1958) Mielczarek Z.: Nowoczesne konstrukcje w budownictwie ogólnym. Wydawnictwo “Arkady”, Warszawa (2001) Neufert E., Neufert P.: Architect’s data. 3rd edition Nożyński W.: Przykłady obliczeń konstrukcji budowlanych z drewna. Wydanie 2 zm., Wydawnictwa Szkolne i Pedagogiczne S.A., Warszawa (1994) Świątecki A., Nita P., Świątecki P.: Lotniska. Wydawnictwo Instytutu Wojsk Lotniczych, Warszawa (1999)

45 Standards Bibliography
PN-77-B – Obciążenia w obliczeniach statycznych. Obciążenie wiatrem. PN-81/B Grunty budowlane. Posadowienie bezpośrednie budowli – Obliczenia statyczne i projektowanie. PN-82/B Ogrzewnictwo – Temperatury ogrzewanych pomieszczeń w budynkach. PN-90-B Konstrukcje stalowe. Obliczenia statyczne i projektowanie. PN-B-03150:2000. Konstrukcje drewniane – obliczenia statyczne i projektowanie. PN-B-03264:2002. Konstrukcje betonowe, żelbetowe i sprężone – obliczenia statyczne i projektowanie. prEN 1990 – Eurocode 0: Basis of structural design. prEN – Eurocode 1: Actions on structures - Part 1-1: General actions - Densities, self-weight, imposed loads for buildings. prEN – Eurocode 1: Actions on structures - Part 1-3: General actions – Snow loads. prEN – Eurocode 1: Actions on structures - Part 1-5: General actions – Thermal actions.

46 Legal papers Web pages Bibliography
Convention on International Civil Aviation. 9th edition (2006) Konwencja o miedzynaroodowym lotnictwie cywilnym (2002) Prawo budowlane. Ustawa z dnia 7 lipca 1994 r. Prawo lotnicze. Ustawa z dnia 3 lipca 2002 r. Rozporzadzenie Ministra Infrastruktury z dnia 31 sierpnia 1998 r. w sprawie przepisów techniczno-budowlanych dla lotnisk cywilnych. Rozporzadzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadac budynki i ich usytuowanie. Rozporzadzenie Ministra Infrastruktury z dnia 25 czerwca 2003 r. w sprawie warunków, jakie powinny spełniac obiekty budowlane oraz naturalne w otoczeniu lotniska. Rozporzadzenie Ministra Infrastruktury z dnia 30 kwietnia 2004 r. w sprawie klasyfikacji lotnisk i rejestru lotnisk cywilnych. Web pages

47 The End Thank you for attention


Pobierz ppt "AIRPORT TERMINAL BUILDING FRP-REINFORCED GLULAM ROOF STRUCTURE"

Podobne prezentacje


Reklamy Google