Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

AIRPORT TERMINAL BUILDING FRP-REINFORCED GLULAM ROOF STRUCTURE Silesian University of Technology Faculty of Civil Engineering Department of Structural.

Podobne prezentacje


Prezentacja na temat: "AIRPORT TERMINAL BUILDING FRP-REINFORCED GLULAM ROOF STRUCTURE Silesian University of Technology Faculty of Civil Engineering Department of Structural."— Zapis prezentacji:

1 AIRPORT TERMINAL BUILDING FRP-REINFORCED GLULAM ROOF STRUCTURE Silesian University of Technology Faculty of Civil Engineering Department of Structural Engineering ENGINEERING DIPLOMA author: Agnieszka KNOPPIK supervisor: PhD SE Marcin GÓRSKI

2 Aim of project The aim of project was to design a roof structure of passenger terminal building for Katowice International Airport made of FRP-reinforced glue-laminated timber frame system taking into consideration operation of the building under standard operation conditions.

3 Range of project 1. Architectural concept of terminal building 2. Design models of roof structure beam model (simplified) surface model (detailed) 3. Composition of loads and combinations of loads under standard operation conditions 4. Stength & stability analysis of roof structure analytic method (simplified) finate element method (detailed) 5. Spatial stiffening of roof structure 6. Constructional drawings of main structure and structural elements

4 Requirements 1. Legal requirements aviation law building law 2. Technical requirements complex development of apron and terminal 3. Architectural requirements functional program 1. Project basis

5 Passenger terminals 1. Terminal 3 at Beijing Capital International Airport, China 986,000 m 2 of total floor area 3.5 km long 5 floors 50 mln passengers/year structure – standard steel modules 2. Review of existing structures 2. Teminal at Chek Lap Kok Airport, Hong Kong 515,000m 2 of total floor area 1.2km long structure – RC frames, steel vaulted frames, waffle floor 3. New Teminal 2 a Mexico City International Airport, Mexico 350,000 m 2 of total floor area RC with masonry filling

6 Glulam hall structures arches truss solid domes ribbednet frames column - beamcurved 2. Review of existing structures

7 Architecture ground floor first floor 3. Structural solutions My architectural concept

8 Structure B x L = 42.9 x m; H 20 m Load-bearing structure FRP-reinforced glulam cable-stayed frames every 6 / 9 m. 3. Structural solutions

9 Static model – beam model arch elements replaced with sequence 0f straight segments flexible supports replacing cables 4. Loads Rough assesment of internal forces distribution.

10 Dead load self load of roof covering self load of structure installations roof bracing case A - max. dead load 4. Loads case B - min. dead load

11 Wind load PN-77-B q k = 550 Pa (account for thrust) C e = 1.2 (height-dependent) β = 1.8 (initial assumption) 4. Loads

12 Wind load case C wind from the left Case E wind from the front case D wind from the right 4. Loads

13 Snow load EN s k = 0.9 kN/m (zone II) C e = 0.8 (windswept topography) C t = 0.77 (glass roof covering) 4. Loads

14 Snow load case F balanced situation case G unbalanced situation 1 case H unbalanced situation 2 4. Loads

15 Temperature EN difference between FRP and glulam: thermal expansion coefficients heat transfer changing cross-sections : different uniform temperature moisture Temperature difference case I - summer ΔT = 20 0 C case J - winter ΔT = C 4. Loads

16 Combinations of loads Fundamental combination (ULS) Characteristic combination (SLS) 5. Combinations of loads always A / B + optionally C / D / E + F / G / H + I / J dead loadwind loadsnow loadtemperature

17 Envelopes of internal forces Bending moments Shear forces Normal forces 5. Combinations of loads

18 FRP –reinforced glulam Moment curvature model – similar to reinforced concrete linear-elastic-ideal-plastic relationship within cross-section linear-elastic behaviour of FRP Bernoulli hypothesis applied shear strength of bond between FRP and timber greater than shear strength of timber along fibres ideally stiff bond, so ε w = ε f substitute section method for stiffness evaluation influence of glue on stiffness neglected, E glue = E timber 6. FRP-reinforced glulam

19 Mechanism of action. Modes of failure 7. ULS analytic

20 Ultimate Limit States 7. ULS analytic bending with axial tension bending with axial compression (horizontal elements) bending with axial compression (vertical elements)

21 Ultimate Limit States strength condition at bent segments shear strength effective geometrical data ecountered 7. ULS analytic

22 Ultimate moment 7. ULS analytic effective height: h = h 0 a c e h = h 0 – h p b d f neutral axis location: h n = h n (h f, E 0, E f, h p ) a b h n = h n (h f, E 0, E f, h p, f m, f c ) c d h n = h n (h f, E 0, E f, h p, f m, f c, ε c )e f modification factor: k M = k M (h n, h f, E 0, E f )a b k M = k M (h n, h f, h c, E 0, E f )c d e f

23 ULS control Control sections: bending + compressionControl sections: shear 7. ULS analytic

24 Static model – surface model 8. ULS FEM

25 Static model – surface model 8. ULS FEM

26 Dynamic wind action. Modal analysis 8. ULS FEM n = 0.45 β = 1.51 n = 1.28 β = 1.41 n = 1.34 β = 1.41 n = 1.90 β = 1.41 n = 2.94 β = 1.42 n = 4.07 β = 1.41 assumption β = 1.8 satisfactory!

27 Ultimate stress 8. ULS FEM Model 1: High concetration of stresses at the internal support Model 2. Increased stiffness of cables. Little change in stress distribution Model 3. No cables. Little change in stress distributionModel 4. Second column introduced. Satisfactory stress distribution

28 Ultimate stress 8. ULS FEM Model 5. Scheme Reinforcement applied: support area - 3 FRP strips h = 1.8mm, E f = 300GPa along top fibres sag area – 1 FRP strip h = 1.4mm, E f = 300GPa along bottom fibres 3 strips σ t > 90% f t,0,g,d 2 strips σ t > 80% f t,0,g,d 1 strip σ t > 70% f t,0,g,d

29 Serviceability Limit States instanteneous deflectionfinal deflection stiffness increase k EI EI k EI = k EI (h f, h p ) negligible effects of FRP creep u fin = u inst (1 + k def ) u fin u fin,net 9. SLS

30 Serviceability Limit States 9. SLS Deformation of girder under characteristic combination of loads Horizontal displacements Vertical displacements

31 Serviceability Limit States 9. SLS Control sections section I-I u ins = 4.1cm k EI = 1.0 u fin = 6.2cm > u net = 5.0cm section II-II u ins = 12.0cm k EI = 1.1 u fin = 16.0cm > u net = 10.0cm

32 + reinforcement in sag area (3 FRP strips h = 1.8mm, E f = 300GPa) Serviceability Limit States 9. SLS Horizontal displacements Vertical displacements

33 Serviceability Limit States 9. SLS Control sections section I-I u ins = 3.1cm k EI = 1.0 u fin = 4.6cm < u net = 5.0cm section II-II u ins = 8.4cm k EI = 1.25 u fin = 9.9cm < u net = 10.0cm most unfavourable case A+H 1 strip k EI = 1.10u 1s = 6.2cm 2 strips k EI = 1.19u 2s = 6.7cm 3 strips k EI = 1.26u 3s = 7.1cm

34 Bracings wind trussbracing located horizontally between adjacent frames transfer wind load to foundations located horizontally between adjacent frames protect nodes of compressed elements against transverse movement 10. Spatial stiffening

35 Wind truss transverse wind truss every 30m longitudinal wind truss along outer edge of roof wall truss 10. Spatial stiffening

36 Roof wind trusses Transverse truss designed for uniformly distributed load q 10. Spatial stiffening Longitudinal truss designed for slenderness conditions: compressed elements λ 250 tensiled elements λ 350

37 Wall trusses 1. Wall truss being a component of transverse roof truss designed for internal forces under q load 2. Wall truss between external columns designed for reaction from girder on columns R = 23kN 10. Spatial stiffening

38 Vertical bracing 10. Spatial stiffening

39 Vertical bracing 10. Spatial stiffening Designed for concentrated load Q Q = q a

40 Bolted joints (steel-to-timber joint) 10. Spatial stiffening Thickness of steel plate Required number of screws in joint per element Number of connectors influences minimum width of connected element! t = t(d, f uk ) R = R(f h,1,d, t 1, d, M yd )

41 Supports 10. Spatial stiffening Support of girder on RC deck – pivot support Reaction from girder V clamp stength of rocker/hull and roller Support of girder on RC deck – column support Reaction from girder V clamp stength of steel bearing and column

42 Glued joints 10. Spatial stiffening shear stress tensile stress across fibres

43 CONCLUSIONS 1.The effect of reinforcement on strength and stiffness of glued-laminated timber elements 2.Comparison of analytic method and final element method

44 Articles Books 9 Polish works 21 foreign works 1. Ajdukiewicz A., Mames J.: Konstrukcje z betonu sprężonego. Polski Cement Sp. z o.o., Kraków (2004) 2. Flaga A.: Inżynieria wiatrowa. Podstawy i zastosowania. Wydawnictwo Arkady, Warszawa (2008) 3. Jasieńko J.: Połączenia klejowe i inżynierskie w naprawie, konserwacji i wzmacnianiu zabytkowych kontrukcji drewnianych. Dolnośląskie Wydawnictwo Edukacyjne, Wrocław (2003) 4. Łubiński M., Filipowicz A., Żółtowski W.: Konstrukcje metalowe. Część I: Podstawy projektowania, wydanie 2zm. Wydawnictwo ``Arkady'', Warszawa (2000) 5. Masłowski E., Spiżewska D.: Wzmacnianie konstrukcji budowlanych. Wydawnictwo ``Arkady'', Warszawa (2000) 6. Michniewicz Z.: Konstrucke drewniane. Wydawnictwo Arkady, Warszawa (1958) 7. Mielczarek Z.: Nowoczesne konstrukcje w budownictwie ogólnym. Wydawnictwo Arkady, Warszawa (2001) 8. Neufert E., Neufert P.: Architects data. 3rd edition 9. Nożyński W.: Przykłady obliczeń konstrukcji budowlanych z drewna. Wydanie 2 zm., Wydawnictwa Szkolne i Pedagogiczne S.A., Warszawa (1994) 10. Świątecki A., Nita P., Świątecki P.: Lotniska. Wydawnictwo Instytutu Wojsk Lotniczych, Warszawa (1999) Bibliography

45 Standards 1. PN-77-B – Obciążenia w obliczeniach statycznych. Obciążenie wiatrem. 2. PN-81/B Grunty budowlane. Posadowienie bezpośrednie budowli – Obliczenia statyczne i projektowanie. 3. PN-82/B Ogrzewnictwo – Temperatury ogrzewanych pomieszczeń w budynkach. 4. PN-90-B Konstrukcje stalowe. Obliczenia statyczne i projektowanie. 5. PN-B-03150:2000. Konstrukcje drewniane – obliczenia statyczne i projektowanie. 6. PN-B-03264:2002. Konstrukcje betonowe, żelbetowe i sprężone – obliczenia statyczne i projektowanie. 7. prEN 1990 – Eurocode 0: Basis of structural design. 8. prEN – Eurocode 1: Actions on structures - Part 1-1: General actions - Densities, self-weight, imposed loads for buildings. 9. prEN – Eurocode 1: Actions on structures - Part 1-3: General actions – Snow loads. 10. prEN – Eurocode 1: Actions on structures - Part 1-5: General actions – Thermal actions. Bibliography

46 Legal papers 1. Convention on International Civil Aviation. 9th edition (2006) 2. Konwencja o miedzynaroodowym lotnictwie cywilnym (2002) 3. Prawo budowlane. Ustawa z dnia 7 lipca 1994 r. 4. Prawo lotnicze. Ustawa z dnia 3 lipca 2002 r. 5. Rozporzadzenie Ministra Infrastruktury z dnia 31 sierpnia 1998 r. w sprawie przepisów techniczno-budowlanych dla lotnisk cywilnych. 6. Rozporzadzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadac budynki i ich usytuowanie. 7. Rozporzadzenie Ministra Infrastruktury z dnia 25 czerwca 2003 r. w sprawie warunków, jakie powinny spełniac obiekty budowlane oraz naturalne w otoczeniu lotniska. 8. Rozporzadzenie Ministra Infrastruktury z dnia 30 kwietnia 2004 r. w sprawie klasyfikacji lotnisk i rejestru lotnisk cywilnych. Bibliography Web pages

47


Pobierz ppt "AIRPORT TERMINAL BUILDING FRP-REINFORCED GLULAM ROOF STRUCTURE Silesian University of Technology Faculty of Civil Engineering Department of Structural."

Podobne prezentacje


Reklamy Google