Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Imperatywne modele obliczeń Copyright, 2003 © Jerzy R. Nawrocki Teoretyczne podstawy.

Podobne prezentacje


Prezentacja na temat: "Imperatywne modele obliczeń Copyright, 2003 © Jerzy R. Nawrocki Teoretyczne podstawy."— Zapis prezentacji:

1 Imperatywne modele obliczeń Copyright, 2003 © Jerzy R. Nawrocki Teoretyczne podstawy informatyki Wykład 2

2 J.Nawrocki, Imperatywne modele obliczeń Język schematów blokowych R 1 R 1 S S + 1 S S + 1 R2 > 0 Tak Nie Start Stop

3 J.Nawrocki, Imperatywne modele obliczeń Plan wykładu Schematy blokowe Liczba automorficzna Obliczanie wielomianu Podział zbioru Problem stopu

4 J.Nawrocki, Imperatywne modele obliczeń Liczba automorficzna Liczba naturalna znajdująca się na końcu swego kwadratu. 5 bo 5 2 = 25 6 bo 6 2 = 36 7 nie bo 7 2 = bo 25 2 = 625

5 J.Nawrocki, Imperatywne modele obliczeń Liczba automorficzna Start Czytaj n Automor(n) TakDrukuj(TAK) NieDrukuj(NIE) Stop var n; begin read(n); if Automor(n) then writeln(TAK) else writeln(NIE) end. Funkcja nie- standardowa

6 J.Nawrocki, Imperatywne modele obliczeń Liczba automorficzna Liczba naturalna znajdująca się na końcu swego kwadratu. rząd(n) = 10 liczba_cyfr(n) n = n*n mod rząd(n) Jak obliczyć Automor(n) ? 5 = 5*5 mod rząd(5) = 25 mod 10 = 5 6 = 6*6 mod rząd(6) = 36 mod 10 = 6 7 7*7 mod 10 = 9

7 J.Nawrocki, Imperatywne modele obliczeń Liczba automorficzna Tak Wynik true Nie Wynik false n=n*n mod rząd(n) function Automor (n: integer): Boolean; begin if n=n*n mod rzad(n) then Automor:= true else Automor:= false end; Deklaracja funkcji Automor

8 J.Nawrocki, Imperatywne modele obliczeń Liczba automorficzna Jak obliczyć rzad(n) ? rząd(n) = 10, 100, 1000,.. rząd(n) > n rz 10 rz <= n Tak rz rz * 10 Nie Wynik rz

9 J.Nawrocki, Imperatywne modele obliczeń Liczba automorficzna rz 10 rz <= n Tak rz rz * 10 Nie Wynik rz function rzad (n: integer): integer; var rz: integer; begin rz:= 10; while rz <= n do rz:= rz*10; rzad:= rz end;

10 J.Nawrocki, Imperatywne modele obliczeń Liczba automorficzna rz 10 rz <= n Tak rz rz * 10 Nie Wynik rz Jak to sprawdzi ć? nrz 25 We Wyj

11 J.Nawrocki, Imperatywne modele obliczeń Liczba automorficzna rz 10 rz <= n Tak rz rz * 10 Nie Wynik rz Jak to sprawdzi ć? nrz 25 We Wyj 10

12 J.Nawrocki, Imperatywne modele obliczeń Liczba automorficzna rz 10 rz <= n Tak rz rz * 10 Nie Wynik rz Jak to sprawdzi ć? nrz 25 We Wyj 10

13 J.Nawrocki, Imperatywne modele obliczeń Liczba automorficzna rz 10 rz <= n Tak rz rz * 10 Nie Wynik rz Jak to sprawdzi ć? nrz 25 We Wyj

14 J.Nawrocki, Imperatywne modele obliczeń Liczba automorficzna rz 10 rz <= n Tak rz rz * 10 Nie Wynik rz nrz 25 We Wyj Wynik=100 Jak to sprawdzi ć?

15 J.Nawrocki, Imperatywne modele obliczeń Liczba automorficzna rz 10 rz <= n Tak rz rz * 10 Nie Wynik rz nrz 25 We Wyj Wynik=100 To działa!

16 J.Nawrocki, Imperatywne modele obliczeń Liczba automorficzna Program główny Automor(n) rzad(n) Czy można połączyć Automor i rzad?

17 J.Nawrocki, Imperatywne modele obliczeń Liczba automorficzna function Automor (n: integer): Boolean; var rz: integer; begin rz:= 10; while rz <= n do rz:= rz*10; if n=n*n mod rz then Automor:= true else Automor:= false end; Program główny Automor(n)

18 J.Nawrocki, Imperatywne modele obliczeń Plan wykładu Schematy blokowe Liczba automorficzna Obliczanie wielomianu Podział zbioru Problem stopu

19 J.Nawrocki, Imperatywne modele obliczeń Obliczanie wielomianu p(x) = a 0 + a 1 x + a 2 x 2 + a 3 x a n x n p(x) = s(0) + s(1) + s(2) s(n) gdzie s(i) = a i x i s(i) = a i *x*x*.. *x Dekompozycja problemu Suma n liczb Iloczyn n liczb

20 J.Nawrocki, Imperatywne modele obliczeń Obliczanie wielomianu Start Stop i 0 P 0 P P + s(i) i i + 1 i n Tak Nie function p(n: integer): real; var i,P: integer; begin i:= 0; P:= 0; while i <= n do begin P:= P + s(i); i:= i + 1 end; p:= P end;

21 J.Nawrocki, Imperatywne modele obliczeń Obliczanie wielomianu S= c(0) * c(1) *.. * c(j) 0, 1,.. jStart Stop i 0 S 1 S S * c(i) i i + 1 i j Tak Nie Obliczanie s(j) = a j x j c(0) = a j c(1) = x c(2) = x... c(j) = x

22 J.Nawrocki, Imperatywne modele obliczeń Obliczanie wielomianu Start Stop S a j i 1 S S * x i i + 1 i j Tak Nie i 0 S 1 S S * c(i) i i + 1 Obliczanie s(j) = a j x j S= c(0) * c(1) *.. * c(j) 0, 1,.. j c(0) = a j c(1) = x c(2) = x... c(j) = x

23 J.Nawrocki, Imperatywne modele obliczeń Obliczanie wielomianu Start Stop S a j i 1 S S * x i i + 1 i j Tak Nie Obliczanie s(j) = a j x j function s(j: integer): real; var i,S: integer; begin S:= a[j]; i:= 0; while i <= j do begin S:= S * x; i:= i + 1 end; s:= S end;

24 J.Nawrocki, Imperatywne modele obliczeń Obliczanie wielomianu Złożoność algorytmu (n+1) razy s(i): s(0).. s(n) Każde s(i): i mnożeń Razem: (n+1) = Złożoność= a*n 2 + b*n + c

25 J.Nawrocki, Imperatywne modele obliczeń Obliczanie wielomianu P(x)= (((a n )*x + a n-1 )*x + a n-2 )*x + a n-3... Schemat Hornera Jak zmniejszyć liczbę mnożeń? a 1 *x + a 0 = a 1 *x + a 0 a 2 *x 2 + a 1 *x + a 0 = (a 2 *x + a 1 )*x + a 0 a 3 *x 3 + a 2 *x 2 + a 1 *x + a 0 = ((a 3 *x + a 2 )*x + a 1 ) + a 0

26 J.Nawrocki, Imperatywne modele obliczeń Plan wykładu Schematy blokowe Liczba automorficzna Obliczanie wielomianu Podział zbioru Problem stopu

27 J.Nawrocki, Imperatywne modele obliczeń Problem podzbioru o danej sumie Dane: zbiór A zawierający n liczb całkowitych dodatnich i liczba s. Pytanie: Czy można w A znaleźć podzbiór B taki, że suma liczb w B jest równa s? = 12 s = / 2 =

28 J.Nawrocki, Imperatywne modele obliczeń Problem podzbioru o danej sumie = 12 s = / 2 =

29 J.Nawrocki, Imperatywne modele obliczeń Problem podzbioru o danej sumie = 12 s = / 2 = Kopiuj poprzedni wiersz

30 J.Nawrocki, Imperatywne modele obliczeń Problem podzbioru o danej sumie = 12 s = / 2 = Uwzględnij bieżący element

31 J.Nawrocki, Imperatywne modele obliczeń Problem podzbioru o danej sumie = 12 s = / 2 = Uwzględnij bieżący element + 2

32 J.Nawrocki, Imperatywne modele obliczeń Problem podzbioru o danej sumie = 12 s = / 2 = Uwzględnij bieżący element

33 J.Nawrocki, Imperatywne modele obliczeń Problem stopu Dany jest podprogram X. Czy ten podprogram skończy obliczenia w skończonym czasie?

34 J.Nawrocki, Imperatywne modele obliczeń Problem stopu function ZatrzymaSię(P: procedure): Boolean; { ??? } procedure X; { while ZatrzymaSię(X) do ; }

35 J.Nawrocki, Imperatywne modele obliczeń Problem stopu ZatrzymaSię(X) procedure X Tak Nie Wniosek: Problem stopu jest nierozstrzygalny

36 J.Nawrocki, Imperatywne modele obliczeń Ocena wykładu 1. Wrażenie ogólne? (1 - 6) 2. Zbyt wolno czy zbyt szybko? 3. Czy dowiedziałeś się czegoś ważnego? 4. Co poprawić i jak?


Pobierz ppt "Imperatywne modele obliczeń Copyright, 2003 © Jerzy R. Nawrocki Teoretyczne podstawy."

Podobne prezentacje


Reklamy Google