Pobierz prezentację
Pobieranie prezentacji. Proszę czekać
OpublikowałNikifor Skubisz Został zmieniony 10 lat temu
1
Bryły geometryczne Wielościany Wielościany_foremne Bryły obrotowe
Zaczynamy? Wybieraj! Wielościany_foremne Bryły obrotowe
2
Wielościany
3
GRANIASTOSŁUP - jest to wielościan, którego dwie ściany,
zwane podstawami,są wielokątami przystającymi, leżącymi na płaszczyznach równoległych, a pozostałe ściany, zwane ścianami bocznymi, są równoległobokami. W graniastosłupie rozróżniamy krawędzie podstaw i krawędzie boczne łączące odpowiednie wierzchołki dwóch podstaw. Graniastosłup jest prosty, jeżeli krawędzie boczne są prostopadłe do podstaw graniastosłupa: wówczas ściany boczne są prostokątami. Graniastosłup jest prawidłowy, jeżeli jest prosty i ma w podsta- wach wielokąty foremne. Pole powierzchni całkowitej obliczamy ze wzoru: Pc=Pp+Pb, a objętość: V=Pp*H.
4
Graniastosłupy PODSTAWY ŚCIANY BOCZNE 1.Graniastosłup pięciokątny
2.Graniastosłup trójkątny
5
Równoległościan Obejrzyj rysunek
- jest to graniastosłup, którego podstawą jest równoległobok. W równoległościanie wszystkie cztery przekątne przecinają się w jednym punkcie i dzielą się w tym punkcie na połowy. Obejrzyj rysunek
6
Równoległościan PRZEKĄTNE
7
Prostopadłościan Przejdź do obliczeń
- jest to równoległościan, którego wszystkie ściany są prostokątami. W prostopadłościanie wszystkie przekątne są równe. Pole powierzchni całkowitej prostopadłościanu obliczamy ze wzoru: Pc=2*(a*b+b*c+a*c); a objętość: V=a*b*c. Przejdź do obliczeń
8
Prostopadłościan
9
OSTROSŁUP Pc=Pp+Pb; a objętość: V=1/3*Pp*H.
- jest to wielościan, który ma w podstawie dowolny wielokąt, a ściany boczne są trójkątami mającymi wspólny wierzchołek, zwany wierzchołkiem ostrosłupa. Ostrosłup nazywamy n-kątnym jeżeli w podstawie leży n-kąt. Ostrosłup ten ma n ścian bocznych,a łącznie z podstawą ma ścian n+1 (rys.1). Ostrosłup jest prawidłowy, jeżeli jego podstawą jest wielokąt foremny, a spadkiem wysokości jest środek tego wielokąta. Pole powierzchni całkowitej ostrosłupa obliczamy ze wzoru: Pc=Pp+Pb; a objętość: V=1/3*Pp*H.
10
Ostrosłupy WIERZCHOŁEK OSTROSŁUPA PODSTAWY 1.Ostrosłup sześciokątny
2.Ostrosłup prawidłowy pięciokątny
11
Czworościan - jest to bryła ograniczona czterema ścianami, z których każda jest trójkątem, inaczej: ostrosłup o podstawie trójkątnej.
12
Wielościany foremne - jest to wielościan, którego wszystkie ściany są
wielokątami foremnymi i wszystkie kąty bryłowe są równe. A teraz przejdź do tabeli
13
Elementy wielościanów foremnych
14
Wielokąty foremne S G H F E C C D B B A A Dalej 2.Sześcian
1.Czworościan foremny
15
3.Ośmiościan 4.Dwunastościan 5.Dwudziestościan
16
Bryły obrotowe Walec Stożek A to ciekawe ! Kula
17
Walec - jest to bryła ograniczona powierzchnią
cylindryczną o kierującej zamkniętej oraz dwiema płaszczyznami równoległymi stanowiącymi podstawy walca. Walec obrotowy ma w podstawie koło, a tworzące są prostopadłe do płaszczyzny podstawy. P=2**r*(r+H) V=*r2*H
18
Walec obrotowy PROMIEŃ PODSTAWY WYSOKOŚĆ WALCA
19
Stożek -jest to bryła ograniczona powierzchnią stożkową
o kierunkowej zamkniętej oraz płaszczyzną stanowiącą podstawę stożka. Stożek obrotowy ma w podstawie koło, którego środek jest spodkiem wysokości stożka. P=*r*(r+l) V=1/3**r2*H
20
Stożek obrotowy TWORZĄCA WYSOKOŚĆ PROMIEŃ PODSTAWY
21
Kula - jest to bryła obrotowa, do której należą
punkty, których odległość od środka kuli jest równa lub mniejsza od jej promienia. V=4/3*p*R P=4*p*R2 To już koniec!! Wracamy?
Podobne prezentacje
© 2024 SlidePlayer.pl Inc.
All rights reserved.