Pobierz prezentację
Pobieranie prezentacji. Proszę czekać
1
Uniwersytet Przyrodniczy we Wrocławiu
O uogólnionych i empirycznych bayesowskich przedziałach ufności dla pewnych funkcji komponentów wariancyjnych w mieszanych modelach liniowych Andrzej Michalski Katedra Matematyki Uniwersytet Przyrodniczy we Wrocławiu
2
Plan referatu 0. Literatura 1. Wprowadzenie 2. Sformułowanie problemu
3. Bayesowskie przedziały ufności dla funkcji komponentów wariancyjnych 4. Uogólnione przedziały ufności dla komponentów wariancyjnych 4.1 idea konstrukcji uogólnionych przedziałów ufności 4.2 przegląd uogólnionych statystyk testowych 5. Porównania – przykłady numeryczne 6. Wnioski
3
Literatura A. Michalski, BAYESIAN AND GENERALIZED CONFIDENCE INTERVALS ON VARIANCE RATIO AND ON THE VARIANCE COMPONENT IN MIXED LINEAR MODELS, Discussiones Mathematicae – Probability and Statistics 29 (2009), 5-29. B. Arendacká, GENERALIZED CONFIDENCE INTERVALS ON THE VARIANCE COMPONENT IN MIXED LINEAR MODELS WITH TWO VARIANCE COMPONENTS, Statistics 39 (4) (2005), K.W. Tsui and S. Weerahandi, GENERALIZED P-VALUES IN SIGNIFICANCE TESTING OF HYPOTHESES IN THE PRESENCE OF NUISANCE PARAMETERS, J. Amer. Statist. Assoc. 84 (1989), S. Weerahandi, TESTING VARIANCE COMPONENTS IN MIXED LINEAR MODELS WITH GENERALIZED P-VALUES, J. Amer. Statist. Assoc. 86 (1991), 5. S. Weerahandi, GENERALIZED CONFIDENCE INTERVALS, J. Amer. Statist. Assoc. 86 (1991), 6. S. Weerahandi, EXACT STATISTICAL METHODS FOR DATA ANALYSIS, Springer-Verlag, New York 1995. 7. L. Zhou and T. Mathew, SOME TESTS FOR VARIANCE COMPONENTS USING GENERALIZED P-VALUES, Technometrics 36 (1994),
4
1. Wprowadzenie Rozważmy następujący mieszany liniowy model normalny:
y - (nx1) wektor obserwacji X - (nxq) rank(X) =s≤q X1 - (nxq1) rank(X1) =s1≤q znane macierze układu - (qx1) wektor stałych efektów 1- (q1x1) wektor losowych efektów e - (nx1) wektor błędów losowych ~ N(0 , 2 In) nieskorelowanych z 1
5
Rozważamy estymatory kwadratowe y’Ay , które są niezmiennicze
względem grupy translacji g(y) = y +X ,tj. dla których AX=0. Jeśli B jest (n-s)xn macierzą: BB’ = In-s i B’B = I – XX+ , to t = By jest maksymalnym niezmiennikiem względem grupy G translacji. Wówczas model dla t jest postaci: Niech W = hi=1iEiEi’ będzie spektralną dekompozycją macierzy W, gdzie 1 .> 2 > h-1 > h = 0, a i dla i=1,…,h sa ich krotnościami. Rozważamy następujące statystyki Zi = t’Ei t/i dla i=1,…h.
6
Lemat (Olsen, Seely, Birkes, (1976)
~ Ponadto, jest maksymalną niezmienniczą statystyką względem grupy G.
7
2. Sformułowanie problemu
Problem przedziałowej estymacji komponentu wariancyjnego 12 jest związany również z testowaniem hipotez postaci: Na ogół testy o dobrych własnościach statystycznych (najmocniejsze lub lokalnie najlepsze) prowadzą do przedziałów ufności o pożądanych własnościach statystycznych na ustalonym poziomie ufności. Ze względu na obecność w modelu parametru zakłócającego 2 nie możemy bezpośrednio w oparciu o statystyki testowe skonstruować przedziału ufności dla 12 , stąd użytecznym staje się wprowadzenie idei uogólnionych p-wartości prawd. i uogólnionych statystyk testowych.
8
2. Bayesowskie przedziały ufności dla funkcji komponentów wariancyjnych
Definicja Estymator y’Ay jest Bayesowskim niezmienniczym kwadratowym i nieobciążonym (BIQU) estymatorem funkcji f’ względem U =(uij)i.j=1.2 (lub względem rozkładu a priori : E’ = U ), jeśli A minimalizuje Bayesowskie ryzyko Var(y’Ay) w klasie symetrycznych i dodatnio określonych macierzy spełniających warunki: AX=0 i E(y’Ay)=f’. Niech U będzie klasą macierzy U symetrycznych i dodatnio określonych o nieujemnych elementach. Wówczas klasa U może być z dokładnością do mnożenia przez stałą scharakteryzowana przez dwa nieujemne parametry u, v tj.: [Gnot and Kleffe (1983), Gnot (1991) ]
9
(BEST INVARIANT QUADRATIC UNBIASED ESTIMATOR)
BAYESOWSKIE ESTYMATORY PRZEDZIAŁOWE DLA UZYSKANE W OPARCIU O ESTYMATORY PUNKTOWE TYPU BIQUE (BEST INVARIANT QUADRATIC UNBIASED ESTIMATOR) Dla dowolnej funkcji klasa dopuszczalnych niezmienniczych kwadratowych nieobciążonych estymatorów w modelu dla k=2 pokrywa się z liniowymi kombinacjami statystyk Zi postaci: gdzie lub
10
2. WYZNACZENIE WARIANCJI ESTYMATORA
KONSTRUKCJA DOKŁADNYCH PRZEDZIAŁÓW UFNOŚCI DLA na poziomie ufności 1-p wg algorytmu A1-5 : 1. WYBÓR ESTYMATORA BIQUE dla ze względu na rozkład a priori na 2. WYZNACZENIE WARIANCJI ESTYMATORA 3. WYZNACZENIE DOKŁADNEGO ROZKŁADU PRAWD. ESTYMATORA
11
dla ustalonego i dla każdego ( 0, ∞ ) otrzymujemy:
4. ZASTOSOWANIE ROZKŁADU FORM KWADRATOWYCH DO WYZNACZENIA KWANTYLI ODPOWIEDNIO RZĘDU p1 i p2 lub
12
A5.1. A5.2. 5. OPTYMALNY WYBÓR KWANTYLI dla każdego ustalonego
Ostatecznie, otrzymujemy (1-p)*100% przedział ufności dla , który jest „dobrym” otoczeniem estymatora punktowego i zabezpiecza nas przed „najgorszym scenariuszem”:
13
Postać explicite ROZKŁADU PRAWD. DOWOLNEJ FORMY KWADRATOWEJ
dla dowolnych i została podana przez GIL-PELAEZ (1951) : gdzie ALGORYTMY: IMHOF (1961); MARTYNOV (1975, 1977); DAVIS (1977); MICHALSKI (1990); Mathematica 4.0 i ↑
14
TSUI & WEERAHANDI (1989), WEERAHANDI (1991, 1993)
4. Uogólnione przedziały ufności dla komponentów wariancyjnych 4.1. Idea konstrukcji uogólnionych przedziałów ufności TSUI & WEERAHANDI (1989), WEERAHANDI (1991, 1993) X ~ F(x, ) , gdzie = (, ) jest wektorem nieznanych parametrów podlega wnioskowaniu statystycznemu, jest wektorem parametrów zakłócających ROZWAŻMY HIPOTEZY : H0: 0 vs H1: > 0 i odpowiednie testy oparte o tzw. uogólnione „p-VALUE”.
15
= (, ) UOGÓLNIONĄ ZMIENNĄ TESTOWĄ
PROBLEM: Jak okreslić obszar krytyczny na bazie statystyki testowej, której rozkład nie zależy od parametrów zakłócających? = (, ) W TYM CELU ROZWAŻAMY FUNKCJE T(X, x, ) O WŁASNOŚCIACH: 1. zaobserwowana wartość tobs = T(x, x, ) nie zależy od nieznanych parametrów 2. dla ustalonego , rozkład zmiennej losowej T nie zależy od dla x 3. dla ustalonego x i , Pr{ T t, } jest monotoniczną funkcją względem dla t FUNKCJa T(X, x, ) SPEŁNIAJĄCA WARUNKI 1 – 3 NAZYWANA JEST UOGÓLNIONĄ ZMIENNĄ TESTOWĄ I MOŻE BYĆ ZASTOSOWANA DO OKRESLENIA OBSZARU KRYTYCZNEGO.
16
= Pr(T(X, x, (0, ) tobs 0)
Niech dla każdego ustalonego x i funkcja rozkładu prawd. T(X, x, (, )) będzie nierosnącą funkcją ( tj. Pr{T(X, x, (, )) ≥ t} jest f. niemalejąca ) Wówczas UOGÓLNIONA ZMIENNA TESTOWA T nazywana jest STOCHASTYCZNIE ROSNACĄ ze względu na , a UOGÓLNIONY OBSZAR KRYTYCZNY dla testowania hipotezy H0 jest postaci: C(x, ) = {X; T(X, x, ) T(x, x, )} a UOGÓLNIONA WARTOŚĆ p ( „p – VALUE” ) dla testowania ww hipotez jest wyrażona przez: p(x) = supo Pr(X C(x, ) ) = supo Pr(T(X, x, (, ) tobs ) = = Pr(T(X, x, (0, ) tobs 0)
17
(x, ) = Pr(X C(x, (, )) )
MAJĄC UOGÓLNIONY OBSZAR KRYTYCZNY MOŻEMY OKRESLIĆ FUNKCJĘ MOCY OPARTĄ O DANE (a data –based power function): (x, ) = Pr(X C(x, (, )) ) dla której zachodzi: (x, 0) =p(x) b) dla każdego ustalonego x (x, ) (dla dowolnego ) jest zmienną ~ R(0,1) c) dla każdego ustalonego x (x, ) jest monotoniczna funkcją Ze względu na własności b) i c) funkcja mocy może być użyta do konstrukcji przedziału ufności dla . Dla dowolnych 1 , 2 (0 ,1) i danej zaobserwowanej wartości x mamy: Pr{ 1(x, )2}=1-p Ostatecznnie, przez inwersję funkcji otrzymujemy (1-p)100% uogólniony przedział ufności dla .
18
4. Uogólnione przedziały ufności dla komponentów wariancyjnych
4.2. Przegląd uogólnionych statystyk testowych Rozważmy następujące statystyki Ui i Si : dla i = 1,…,h 1. Dla h=2 posiada własności uogólnionej zmiennej testowej: tobs = u1/u2 nie zależy od nieznanych parametrów, jej rozkład jest niezależny od parametru zakłócającego σ2 a T jest stochastycznie rosnąca względem σ12 .
19
1. 2. 3. 2. Dla h > 2 (Zhou & Mathew (1994) )
dla dowolnych ci > 0 1. odp. testowi Walda 2. odp. zmod. testowi Walda i oparta o Bayesowski est. odp. stat. testowej opartej o Bayesowski gran. est. 3.
20
4. Weerahandi (1995) dla mieszanego niezrównowazonego modelu 1-kierunkowej klasyfikacji Wartości funkcji mocy opartej o statystykę T1 obliczamy z następującej nierówności : gdzie oznacza rozkład prawd. liniowej kombinacji niezależnych zmiennych losowych , a jest f. gestości dla t.j.:
21
5. Porównania – przykłady numeryczne
~ 5. Porównania – przykłady numeryczne MIESZANY MODEL 2-KIERUNKOWEJ KLASYFIKACJI [ Ex.2 , Michalski (2009)] N – macierz incydencji układu blokowego r = (4, 4, 4, 8, 48) ; n=68
22
WYNIKI SYMULACJI (LS=2000) DLA WARTOŚCI PARAMETRÓW
{ (0.1 , 10) , (0.5 , 2) , ( 1, 1 ) , (2, 0.5) , (5 , 0.2) } Tab.1. Prawdopodobieństwa pokrycia prawdziwej wartości przez uogólnione przedziały ufności dla różnych statystyk testowych
23
Tab.2. Średnie długości uogólnionych przedziałów ufności dla różnych
statystyk testowych
24
Tab. 3. Bayesowskie przedziały ufności na poziomie ufności 1-(p1+p2)=0
i ich długości l(p1, p2) dla wybranych par (u,v).
25
6. Wnioski Wyniki symulacji nie wykazują, że obliczone prawdopodobieństwa pokrycia prawdziwych wartości parametru 12 są mniejsze niż przyjęty poziom ufności 1-p = 0.95 (ii) Należy zachować ostrożność przy wyborze uogólnionych statystyk testowych do konstrukcji przedziałów ufności np. statystyka testowa T1 daje mało stabilne rezultaty dla śr. długości przedziałów ufności dla różnych par (12 , 2 ). (iii) Statystyki T11/ i T2 dają zbliżone rezultaty i krótsze przedziały ufności jak rośnie iloraz komponentów wariancyjnych w porównaniu do statystyki Walda (iv) Bayesowskie przedziały ufności stanowią istotną alternatywę dla uogólnionych przedziałów ufności dla różnych par (u,v) są krótsze i bardziej stabilne. Ponadto, wybór odp. wartości kwantylowych pozwalających zachować zadany poziom ufności, powinien być asymetryczny.
26
D z i ę k u j ę Szanownym Słuchaczom za … Uwagę Max
Podobne prezentacje
© 2024 SlidePlayer.pl Inc.
All rights reserved.