Pobierz prezentację
Pobieranie prezentacji. Proszę czekać
1
inżynierskie metody numeryczne
D11/106, konsultacje: środy 8:30-10:00 cel przedmiotu: przygotowanie do pracy w zakresie numerycznego modelowania zjawisk i urządzeń stosowanego w zagadnieniach techniki (inżynierii) i nauki symulacje obliczeniowe: w technice: inżynieria obliczeniowa: modelowanie i symulacja zjawisk i urządzeń. badania i optymalizacji procesów produkcyjnych oraz produktów. w nauce: interpretacja i przewidywanie danych doświadczalnych, zrozumienie obserwacji, przewidywanie nowych zjawisk. Modelowanie naukowe/inżynieryjne: metody podobne, różnica w celu oraz obiekcie badań Do pierwszego wykładu – wstęp, program, organizacja zajeć, oceny
2
Metody badani układów/zjawisk/urządzeń:
Metody teoretyczne (modele rozwiązywane ściśle - analityczne) ograniczone do prostych problemów (w nauce – te akurat są często najważniejsze) lub wyidealizowanych modeli. Idealizacja oparta na intuicji, które bywa błędna. Badania doświadczalne nieodzowne i najważniejsze, ale drogie (i / lub czasochłonne) często same w sobie nie pozwalają na zrozumienie zjawiska przydatne wsparcie ze strony obliczeń ścisłych lub przybliżonych Symulacje numeryczne pozwalają na rozwiązywanie dokładnych równań z kontrolowalną dokładnością często do wykonania taniej i szybciej niż badania doświadczalne pozwalają prześledzić wyniki w funkcji dowolnych parametrów – pełna informacja o możliwych do osiągnięcia własnościach
3
Tematyka wykładu: głównie rozwiązywanie równań różniczkowych:
zwyczajnych i cząstkowych. Równania różniczkowe – opis zjawisk wprowadzony w XVIII / XIX w. Problemy rozwiązywalne analitycznie – nieliczne. [np. Równania dynamiki płynów znane od połowy XIX wieku Navier/Stokes od stosunkowo niedawna są rozwiązywane poza najprostszymi przypadkami] Metody numeryczne – przybliżone i wydajne rozwiązania równań. -- równie stare jak same równania Metoda Eulera – XVIII w. Metody Rungego-Kutty, Galerkina – początek XX wieku. Kwadratury Newtona, Gaussa – stara historia (odkrycie Neptuna – połowa XIX wieku wynik symulacji numerycznej). Nowsza historia: szybka transformata Fouriera, iteracje wielosiatkowe, niejawne metody RK Stosowanie metod numerycznych – ograniczone i żmudne przed wynalezieniem komputerów.
4
Znaczenie modelowania numerycznego rosło i będzie rosło z rozwojem sprzętu ...
Rok FLOPS Pamięć EDSAC (lampowy) kB 1997 ASCI Red (symulator eksplozji jądrowych) GB 2002 NEC Earth Simulator (modelowanie klimatu) TB 2009 IBM Blue Gene / Q TB oraz metod obliczeniowych (za M. Schaeferem, computational engineering) Rok Tempo rachunków Eliminacja Gaussa 1 Metoda Gaussa-Seidla 15 Nadrelaksacja 250 1985 Metoda gradientów sprzężonych 1 k Metody wielosiatkowe 5 k 2000+ Siatka adaptowana 50 k
5
Symulacje numeryczne są ze swej natury interdyscyplinarne
(matematyka, metody numeryczne, nauki ścisłe, konkretna dziedzina inżynierii / nauki + programowanie) - gdzie trzeba będę starał się podawać elementarną wiedzę z zakresu fizyki opisywanych zjawisk. Matematyka numeryczna Informatyka Symulacja numeryczne Fizyka/Chemia Dziedzina pochodzenia problemu (inżynieria/nauka) Tylko w ujęciu inter – symulacje są użyteczne (interesujące)
6
Miejsce numeryki w rozwiązywaniu problemów
Problem (naukowy/inżynieryjny) Rozwiązanie Dane doświadczalne, modele matematyczne Analiza i interpretacja Weryfikacja i korekta modelu Równania różniczkowe / warunki brzegowe wartości użyteczne / mierzalne Przetworzona informacja *** Generacja siatki, dyskretyzacja (czasu / obszaru całkowania) Obróbka danych *** * Algebraiczne algorytmy numeryczne ** programowanie *** Układy równań algebraicznych Rozwiązanie numeryczne (milion liczb) *** *wykład (FDM,FVM,FEM,BEM) ** wykład (ten lub KSN) *** laboratorium
7
Szczegółowy program wykładu:
galaxy.uci.agh.edu.pl/~bszafran/imn10/planw10.pdf Literatura: Press, Numerical Recipes (The art of scientific computing). Haupt, Practical Genetic Algorithms. Weinberger, A first course in partial differential equations. Koonin, Computational Physics. Solin, Partial Differential Equations and the Finite Element Method. Zienkiewicz, Finite Element Method, its basis & fundamentals. Lienhard, A Heat Transfer Textbook. Sabersky, Fluid flow : a first course in fluid mechanics. Quarteroni, Numerical mathematics. Trefethen, Finite difference and spectral methods for ordinary and partial differential equations. Cichoń, Metody Obliczeniowe. Sewell, The numerical solution of ordinary and partial differential equations. Evans, Numerical Methods for Partial Differential Equations R.Grzymkowski, A.Kapusta, I. Nowak, D. Słota, Metody Numeryczne, Zagadnienia Brzegowe Schafer, Computational Engineering, Introduction to Numerical Methods
8
Laboratorium: staramy się aby związek wykładu z laboratorium był bliski 1:1
Tematy (za treść odpowiedzialny – wykładowca) - na stronie Podane jest w tej chwili około 10 tematów – ich treść może się zmieniać, ale nie później niż 7 dni przed zajęciami laboratoryjnymi. 4 Grupy: Wtorek 14:30-17:30 dr inż. Małgorzata Krawczyk Środa dr inż. Przemysław Gawroński Środa 14:30-17:30 dr inż. Krzysztof Malarz Środa dr inż. Maciej Wołoszyn
9
Ocena z laboratorium: Średnia arytmetyczna z aktywności i raportów. Aktywność: oceniana na podstawie wyników i źródeł przesłanych prowadzącemu pod koniec zajęć. Raporty: pełne, lecz możliwe krótkie opisy uzyskanych wyników. Ocena raportu: za kompletne i poprawne wyniki uzyskać można do 60% : za adekwatny komentarz wyników 20% : za sensowny, samodzielnie napisany i zwięzły wstęp oraz wnioski – po 10% (zwięzły znaczy – nie dłuższy niż 6 zdań). Raport należy przysłać prowadzącemu w terminie 14 dni (w semestrze zimowym 7 dni) od zakończenia zajęć. Raporty przysłane później nie będą punktowane.
10
Ocena z laboratorium: Student ma prawo do dwukrotnego poprawiania zajęć laboratoryjnych. zamiast zajęć poprawkowych: anulujemy każdemu studentowi dwie najgorsze oceny z aktywności / raportu
11
Egzamin: pisemny (test), 5 zadań do rozwiązania.
Przystąpić mogą osoby z zaliczonymi obydwoma semestrami lab. Ocena: 1/3 średniej z zaliczeń + 2/3 wyniku testu Dla potrzeb egzaminu średnia z zaliczeń policzona będzie z górnych widełek dla danej oceny: Regulamin AGH: 91 – 100% bardzo dobry (5.0); 81 – 90% plus dobry (4.5); 71 – 80% dobry (4.0); 61 – 70% plus dostateczny (3.5); 50 – 60% dostateczny (3.0); Przykład: osoba z dwoma czwórkami rozwiązuje 2 zadania na 5 1/3 80% + 2/3 40% >50 % Wniosek: dobre zaliczenie bardzo pomaga zdać egzamin ( )/2 = (70%+100%)/2 = 85%
12
Zwolnienie z egzaminu:
Student, którego średnia z zaliczeń laboratoryjnych będzie odpowiadała 4.5 (>80%) - może zostać zwolniony z egzaminu [średnia z zaliczeń zostaje wpisana wtedy jako wynik egzaminu]: Pary ocen uprawniających do zwolnienia z egzaminu: → 4.5 → 5
13
Obecny plan laboratorium:
Zajęcia 1: algorytm kolonii mrówek Zajęcia 2: symulowane wygrzewanie ( Środki przeszkód do zadania 2). Zajęcia 3: wariacyjne MC z algorytmem Metropolisa dla równania Poissona Zajęcia 4: schematy jawne i niejawne dla rrz Zajęcia 5: ekstrapolacja Richardsona: szacowanie błędów i automatyczny dobór kroku czasowego Zajęcia 6: problemy sztywne Zajęcia 7: niejawne metody RK Zajęcia 8: problem brzegowy 1D, metoda Numerowa Zajęcia 9: iteracja wielosiatkowa dla równania Laplace'a Zajęcia 10: metody relaksacyjne Zajęcia 11: przepływ potencjalny Zanim dojdziemy do równań różniczkowych – mniej twarde rachunki, być może mniej ważne – ale nie mniej ciekawe niż główny wątek wykładu ... Zaczynamy od mrówek ...
14
optymalizacja kombinatoryczna – dla zmiennej dyskretnej
Przykład: najkrótsza sieć (kanalizacyjna, energetyczna, światłowodowa) dla miast powiatowych województwa małopolskiego:
15
optymalizacja kombinatoryczna – dla zmiennej dyskretnej
Przykład: najkrótsza sieć (kanalizacyjna, energetyczna, światłowodowa) dla miast powiatowych województwa małopolskiego: Województwo zakodowane w postaci grafu – poszukiwane najkrótsze drzewo spinające. 31
16
optymalizacja kombinatoryczna – dla zmiennej dyskretnej
Przykład: najkrótsza sieć (kanalizacyjna, energetyczna, światłowodowa) dla miast powiatowych województwa małopolskiego: Województwo zakodowane w postaci grafu – poszukiwane najkrótsze drzewo spinające. 31 Rozwiązanie:
17
optymalizacja kombinatoryczna – dla zmiennej dyskretnej
Przykład: najkrótsza sieć (kanalizacyjna, energetyczna, światłowodowa) dla miast powiatowych województwa małopolskiego: Województwo zakodowane w postaci grafu – poszukiwane najkrótsze drzewo spinające. 31 rozwiązanie dane przez algorytm zachłanny Kruskula : tworzymy las dodając po kolei najkrótsze krawędzie tak aby nie utworzyć pętli: dostaniemy najlepsze rozwiązanie a. zachłanny: kieruje się regułą maksymalnego zysku w najbliższym kroku (w szachach sukcesów nie odnosi) Rozwiązanie:
18
Limanowa-Nowy Sącz C 4 1 K T 4 2 B 4 3 3 1 4 2 3 6 M 3 2 4 5 W 4 2 L 6
31 3 1 4 2 3 6 M 3 2 4 5 W 4 2 L 6 5 2 3 4 3 S 3 6 G 5 7 N S N T
19
Wadowice-Chrzanów C 4 1 K T 4 2 B 4 3 3 1 4 2 3 6 M 3 2 4 5 W 4 2 L 6
31 3 1 4 2 3 6 M 3 2 4 5 W 4 2 L 6 5 2 3 4 3 S 3 6 G 5 7 N S N T
20
Myślenice-Kraków G T N S L B K M W C 3 6 4 5 2 7 1 31
21
Bochnia-Limanowa C G T N S L B K M W 3 6 4 5 2 7 1 31
22
Wadowice-Myślenice C 4 1 K T 4 2 B 4 3 3 1 4 2 3 6 M 3 2 4 5 W 4 2 L 6
31 3 1 4 2 3 6 M 3 2 4 5 W 4 2 L 6 5 2 3 4 3 S 3 6 G 5 7 N S N T
23
Nowy Sącz-Gorlice C 4 1 K T 4 2 B 4 3 3 1 4 2 3 6 M 3 2 4 5 W 4 2 L 6
31 3 1 4 2 3 6 M 3 2 4 5 W 4 2 L 6 5 2 3 4 3 S 3 6 G 5 7 N S N T
24
bezpośrednie połączenie CK już się nie przyda
Kraków-Bochnia C 4 1 K 4 2 T B 4 3 31 3 1 4 2 3 6 M 3 2 4 5 W 4 2 L 6 5 2 3 4 3 S 3 6 G 5 7 N S N T
25
M-NT B-T G T N S L B K M W C 3 6 4 5 2 7 1 31
26
Algorytm zachłanny – skuteczny więc - problem najkrótszego
31 Algorytm zachłanny – skuteczny więc - problem najkrótszego drzewa spinającego jest łatwy. Rozwiązanie: Złożoność dla najlepszej implementacji O(|V|log|V|), V – liczba wierzchołków
27
Problem najkrótszej drogi z wierzchołka A do wszystkich pozostałych w grafie (przeszukiwanie grafu wszerz z oznaczaniem wierzchołków) Każda krawędź ma wagę (długość) – ustalone i definiujące problem Wierzchołkowi przypisujemy: Wagę: najkrótsza znaleziona odległość z wierzchołka A Kolor: biały oznacza, że waga tymczasowa, czarny, że ustalona (krócej nie będzie) Etykietę: którędy do A Wagi, kolory i etykiety wierzchołków zmieniają się w czasie działania algorytmu 0) Oznacz wszystkie wierzchołki kolorem białym. Przypisz wierzchołkowi startowemu (A) wagę 0 Znajdź i zaczerń biały wierzchołek v o najmniejszej wadze Dla każdego B - białego wierzchołka przyległego do v: jeśli waga B > waga v + waga krawędzi (v,B) lub jeśli waga B nie została wcześniej zdefiniowana waga B:=waga v + waga krawędzi (v,B) oraz ustaw etykietę B na v Jeśli są jeszcze białe wierzchołki idź do 1 (złożoność V2)
28
przykład: najkrótsze trasy z Gorlic do pozostałych miast
1) Gorlice malujemy na czarno, miastom sąsiednim nadajemy wagi – odległości od Gorlic i indeks G. G T N S L B K M W C 3 6 4 5 2 7 1 2) Szukamy białego miasta o najmniejszej wadze i malujemy je na czarno (Nowy Sącz), wagę czarnego miasta ustalamy (mniejszej nie będzie) G T N S L B K M W C 3 6 4 5 2 7 1 3) sąsiedzi Nowego Sącza otrzymują próbne wagi i etykiety G T N S L B K M W C 3 6 4 5 2 7 1 9
29
4) Najmniejszą wagę ma teraz Tarnów,
5) Następnie Limanowa C G T N S L B K M W C 3 6 4 5 2 7 1 9 8 4 1 8 9 T K T 4 2 B 4 4 4 5 G 3 1 4 2 do Bochni z Gorlic bliżej przez Tarnów niż przez Limanową 3 6 M 9 1 L ? 3 2 4 5 W 4 2 1 1 L L 5 9 N S 6 5 2 3 4 3 S 3 6 5 7 G N S 3 6 G N T 9 3 N S 6) Bochnia 7) Po Nowy Targu – Myślenice, z nich bliżej do Wadowic G T N S L B K M W C 3 6 4 5 2 7 1 9 8 ? do Myślenic jednak bliżej przez Limanową
30
ostatecznie Np.: z Chrzanowa do Gorlic trafimy po etykietach
31
Np.: z Chrzanowa do Gorlic trafimy po etykietach
ostatecznie Np.: z Chrzanowa do Gorlic trafimy po etykietach Zamiast stosować algorytmu można zrobić model z nitek i koralików, potem naciągnąć koraliki oznaczające Chrzanów i Gorlice
32
Algorytm zachłanny dla komiwojażera:
Widzieliśmy, że dwa ważne problemy mają efektywne, deterministyczne, dokładne rozwiązanie Niektóre problemy są jednak obiektywnie trudne (nie istnieje algorytm o złożoności wielomianowej): wybór najkrótszej zamkniętej trasy przez wszystkie miasta (problem komiwojażera): Odwiedzić wszystkie miasta w cyklu zamkniętym w takiej kolejności aby pokonana trasa była najkrótsza. algorytm deterministyczny rozwiązujący problem dokładny z wielomianową złożonością nie istnieje, gdy problem o dużym rozmiarze należy rozwiązać – stosuje się podejścia heurystyczne lub Monte Carlo Algorytm zachłanny dla komiwojażera: ruszaj do najbliższego miasta, którego jeszcze nie odwiedziłeś. - rozsądny: wyeliminuje przynajmniej długie przejazdy bez zatrzymywania się Klasyczny problem testowy dla algorytmów optymalizacyjnych
33
Zachłanne rozwiązanie nie jest optymalne (choć nie najgorsze)
Rozwiązanie zachłanne: start ze Szczecina: Najlepsze PL: 46 miast Szukana jest permutacja - przejrzeć wszystkie N! - niewykonalne 46!= najlepszy algorytm dokładny: złożoność rzędu 2N –lepiej niż N!, ale wciąż wiele 246= Gdy problem zbyt trudny by go rozwiązać dokładnie przy pomocy algorytmu deterministycznego – można zadowolić się przybliżonym (heurystycznym) lub próbować je poprawić przy pomocy MC
34
Problem obiektywnie trudny = gdy najlepszy deterministyczny algorytm nie zakończy swojego działania w skończonym czasie klasy złożoności obliczeniowej Problemy decyzyjne: z odpowiedzią tak/nie Problemy NP Schemat obowiązuje pod warunkiem że PNP P NP-zupełne NP – można łatwo sprawdzić odpowiedź (w czasie wielomianowym) zadanie rozkładu na czynniki pierwsze liczby nieznany jest wielomianowy algorytm (na komputer klasyczny) ale jeśli ktoś nam poda odpowiedź szybko sprawdzimy. P – problemy, dla których znane jest rozwiązanie o wielomianowej złożoności (nie ma dowodu, że PNP.) NP – zupełne (najtrudniejsze) – można do nich sprowadzić dowolny problem z NP z nadkładem wielomianowym. Jeśli jeden z problemów NP.-zupełnych zostanie rozwiązany w czasie wielomianowym, to P=NP.
35
Problemy NP P NP-zupełne F Faktoryzacja jest NP, wydaje się, że nie jest P i że nie jest NP-zupełna. [„Wydaje się, że nie P” na tyle bardzo, że protokół klucza publicznego RSA oparty na niewykonalności faktoryzacji w krótkim czasie] NP.-zupełne: problem spełnialności binarnego układu logicznego, problem komiwojażera, izomorfizmu grafów, kliki, kolorowania wierzchołków grafu i inne. W praktyce problemy, które nie są P – stają się niemożliwe do dokładnego rozwiązania dla dużych rozmiarów zadania
36
Cykl (zamknięta ścieżka) Eulera
najkrótsza trasa z A do B – problem łatwy (bo wielomianowy algorytm znany) najkrótsza trasa po wszystkich miastach – problem trudny (bo algorytm wielomianowy nieznany) Inna znana para pozornie podobnych problemów o skrajnie różnej złożoności obliczeniowej: problem istnienia cyklu Eulera i cyklu Hamiltona Cykl (zamknięta ścieżka) Eulera Zadanie: zaplanować trasę spaceru: przejść po każdym moście dokładnie raz i wrócić do punktu wyjścia (odwiedź wszystkie krawędzie grafu dokładnie raz)
37
Cykl Eulera w grafie istnieje wtedy i tylko wtedy gdy wszystkie jego wierzchołki są stopnia parzystego 3 stopień wierzchołka = liczba przyległych krawędzi 5 3 3 przy każdym przejściu przez wierzchołek używamy 2 krawędzi Jeśli istnieje to parzyste stopnie Jeśli parzyste stopnie to można wskazać cykl E zaczynamy spacer od dowolnego wierzchołka usuwając z grafu przebyte krawędzie, wrócimy do wierzchołka startowego bez rozspójniania grafu
38
Cykl Hamiltona odwiedzić wszystkie wierzchołki bez powtarzania przemarszu przez żadną z krawędzi wracając do punktu wyjścia (nie trzeba korzystać z każdej krawędzi, co wcale nie ułatwia zadania, bo problem istnienia CH – np.-zupełny ) graf planarny (rzut środkowy dwunastościanu)
39
cykl Hamiltona dla dwunastościanu
40
Jeśli wiemy, że problem NP-zupełny, a rozmiar problemu duży
Jeśli wiemy, że problem NP-zupełny, a rozmiar problemu duży – poszukajmy rozwiązania przybliżonego Metoda dokładna nie zadziała w skończonym czasie. Jeśli nie wiemy jak szukać- poszukajmy losowo. Lecz: Całkiem ślepe przeszukiwanie losowe nie różni się od przeglądania wszystkich rozwiązań: prawdopodobieństwo znalezienia najlepszego jest żadne, a i rozsądnego znikome. Problem komiwojażera dla 20 miast w pd-wsch Polsce Wszystkich permutacji jest 20!= Najlepsza trasa znaleziona po prób (długość [j.umowne] ) Widać, że kiepska: ) skrzyżowane trasy 2) krócej będzie Tarnów-Nowy Sącz-Kraków Katowice
41
Najlepsza trasa znaleziona po 1000 000 losowaniach (długość 89. 12 [j
Najlepsza trasa znaleziona po losowaniach (długość [j.umowne] ) Algorytm zachłanny start z Częstochowy 68.73 Wniosek: jeśli przeszukiwanie MC ma być skuteczne – nie może być całkiem losowe
42
Optymalizacja wg podejścia „kolonii mrówek”
Dorigo M, Gambardella LM BIOSYSTEMS Mrówki zostawiają na swojej trasie szlak zapachowy (feromonowy). Pozostałe mrówki starają się go śledzić. źródło rysunków: Eberhart,Shi,Kennedy: Swarm Intelligence Ręcznie położony szlak zapachowy Ślad zapachowy: 1) wyznacza trasę między mrowiskiem a źródłem pożywienia 2) pozwala na jej optymalne wytyczenie 3) umożliwia adaptację do zmieniającego się środowiska
43
Dodatnie sprzężenie zwrotne
źródło rysunków: Eberhart,Shi,Kennedy: Swarm Intelligence Dodatnie sprzężenie zwrotne (najsilniejszy ślad na najkrótszej drodze).
44
Szlak zapachowy i adaptacja trasy dla zmienionego otoczenia
wstawiona przeszkoda losowo na prawo/lewo ? ? Na krótszej drodze szlak feromonowy szybciej domknięty Dodatnie sprzężenie zwrotne Dorigo M, Gambardella LM BIOSYSTEMS
45
Algorytm kolonii mrówek dla problemu komiwojażera
Założenia: 1 W metodzie: grupa przemieszczających się wędrowców symulujących zachowanie mrówek 2 Preferowany szlak o największym nasileniu feromonu 3 Wzrost feromonu na najkrótszej trasie 4 Komunikacja między mrówkami przez szlak feromonowy 5 Strategia najbliższego sąsiada włączona w algorytm (mrówki kierują się nie tylko feromonem, ale również starają się dostać do miast raczej bliżej niż dalej położonych) Sztuczne mrówki potrafią więcej niż prawdziwe: (1) Pamiętają swoją trasę (2) Ustalają, która przeszła najkrótszą drogę
46
t(i,j) = f(i,j) / [d(i,j)]b
Miasta połączone w graf pełny: krawędź między wierzchołkami i oraz j opisana (1) długością d(i,j) stała, definiuje problem (2) natężeniem feromonu f(i,j) zmienia się w trakcie nauki Z długości (stałej) i feromonu (zmiennego) budujemy funkcję preferowanego ruchu: t(i,j) = f(i,j) / [d(i,j)]b im większe t(i,j) tym większe będzie pstwo przejścia z i do j – parametr [znaczenie feromonu/długości krawędzi] =0 tylko feromon, duże b -tylko długość optymalne: b=2
47
Mrówki wykonują wiele obiegów
przed każdym z nich są losowo rozmieszczane po miastach
48
? Parametr q0 z przedziału (0,1).
Wybór mrówki: jest w mieście i do którego miasta iść? i Tu nie pójdzie bo już była Każda krawędź opisana przez t(i,j) ? mrówka kieruje się doświadczeniem zdobytym przez mrowisko, nawet gdy wybór miasta następuje przy użyciu generatora liczb losowych Parametr q0 z przedziału (0,1). q0 – jeśli wysokie mrówki bardziej skłonne korzystać z doświadczenia społeczności – jeśli niskie mrówki chętniej eksperymentują z nowymi trasami Losujemy q z przedziału (0,1): jeśli q<q0 [doświadczenie] mrówka idzie do nie odwiedzonego jeszcze miasta j, dla którego t(i,j) = max jeśli q>q0 [eksploracja] miasto j jest losowane z rozkładem, w którym prawdopodobieństwo jest proporcjonalne do t(i,j) wstawic jutro jak zrobic generator, w ktorym pstwo proporcjonalne do t optymalne q0=0.9
49
Stworzyć dyskretny generator losowy o zadanym rozkładzie
miasto j jest losowane z rozkładem, w którym prawdopodobieństwo jest proporcjonalne do t(i,j) Stworzyć dyskretny generator losowy o zadanym rozkładzie dysponując generatorem o rozkładzie równomiernym z przedziału (0,1) powiedzmy że dla ustalonego i mamy: t(i,4)=1.05, t(i,2)=t(i,3)=.81, t(i,1)=.195 liczymy rozkład pstwa: p(i,j)=t(i,j)/suma i p % % % % Tworzymy tablicę dystrybuanty rozkładu 1 2 3 4 P(0)=0 P(1)=0.11 P(2)=0.38 P(3)=0.65 P(4)=1 Losujemy liczbę l z przedziału (0,1) z rozkładem równomiernym. Uznajemy, że wylosowany został osobnik i+1 (słownie i plus pierwszy), jeśli
50
Odkładanie feromonu na krawędziach : globalne i lokalne
Ma preferować najkrótszy szlak. Następuje na całej trasie gdy mrówki wykonają pełen obieg i porównają długości swoich tras. Najkrótsza w jednym obiegu: czerwona Feromon na każdej z krawędzi należącej do najkrótszej trasy zostaje zmieniony wg. f(i,j):=(1-a)f(i,j)+a/D dla wszystkich krawędzi (i,j) na najkrótszej trasie, D – długość najkrótszej trasy – parametr z (0,1) a = 0 - ostatni przebieg ignorowany =1 ignorowane doświadczenie z poprzednich przebiegów zazwyczaj optymalne około a=0.1
51
f(i,j):=(1-a)f(i,j)+a/D
Odkładanie feromonu na krawędziach : globalne i lokalne 1) Globalne (zachęcające, wykonywane po każdym obiegu) f(i,j):=(1-a)f(i,j)+a/D D – długość najkrótszej trasy Lokalne (zniechęcające, wykonywane po każdym kroku) Ma zniechęcać mrówki w przed poruszaniem się po dokładnie tej samej trasie (w tym samym obiegu) tym samym stymulując pozostałe do poszukiwań. Następuje na krawędzi (i,j) po przejściu mrówki z i do j. Feromon na krawędzi (i,j): f(i,j):=(1-a)f(i,j)+a/p p – parametr zniechęcający (p=ML, M-liczba miast, L-długość trasy wg. heurystyki najbliższego sąsiada)
52
Algorytm kolonii mrówek dla problemu komiwojażera
wprowadzamy problem – graf pełny o N wierzchołkach. z długościami krawędzi d(i,j). Na krawędzi (i,j) ustawiamy początkowy poziom feromonu f(i,j)=1/[d(i,j)]b rozmieszczamy m mrówek w losowo wybranych miastach każda z mrówek przechodzi z miasta i do miasta j, którego jeszcze nie odwiedziła z pstwem q miasto j jest wybierane tak aby t(i,j) max z pstwem 1-q0 miasto wybierane jest losowo z rozkładem danym funkcją preferencji. przy przejściu mrówka odkłada feromon lokalnie (zniechęcająco) na krawędzi (i,j) powtarzamy N razy każda z mrówek kończy obieg po pełnym obiegu mrówki porównują swoje trasy. feromon jest odkładany globalnie po najkrótszej trasie (zachęcająco na wszystkich krawędziach trasy) powtarzamy dopóki długość trasy ulega skróceniu
53
Dobór parametru q0 Wyniki (rozkład prawdopodobieństwa
zmienia się z czasem) Losowe tylko rozmieszczanie mrówek przed każdym obiegiem Eksploracja przydaje się żeby przyspieszyć zbieżność. okres nauki
54
Optymalna liczba mrówek
Okres nauki
55
Społeczność uczy się najkrótszej trasy cd:
20 miast PL południowo-wschodnia trasa optymalna – na niebiesko czerwone – krawędzie najbardziej preferowane [ max t(i,j) ] 10 iteracja 25 iteracja 500 iteracja Tylko 2 najbardziej preferowane krawędzie nie należą do trasy optymalnej: Przemyśl-Rzeszów, Katowice-Częstochowa Tylko 3 najbardziej preferowane krawędzie należą do trasy optymalnej. Przypadkowe zagęszczenie w okolicach Lublina i Świdnika Wszystkie najbardziej preferowane należą do trasy optymalnej
56
Bartłomiej Urbaniec: 20 krawędzi o największej funkcji preferencji w kolejnych iteracjach 20 najczęściej używanych krawędzi parametry b=2, q0=0.2, m=10
57
Trasy mrówek w ostatniej iteracji (Bartłomiej Urbaniec)
58
Bartłomiej Urbaniec: Zastosowanie algorytmu dla problemu najkrótszej drogi (do problemu rozwiązywanego przez prawdziwe mrowisko – który stanowił inspirację dla stworzenia algorytmu) wprowadzamy prostokątna siatkę punktów punkty nie są łączone w graf pełny łączymy krawędziami tylko najbliższych sąsiadów punkt czerwony przeszkoda długość czerwonych krawędzi ustawiany nieskończona pozostałe d(i,j)=1 3) mrówka wybiera spośród (zazwyczaj) 4 możliwości ruchu 4) pozwalamy jej wracać do punktów już odwiedzonych 5) nakładamy ograniczenie na maksymalną liczbę kroków
59
250 1 obieg 50 750
Podobne prezentacje
© 2024 SlidePlayer.pl Inc.
All rights reserved.