Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Kwantowa teoria umysłu Uniwersytet Marii Curie-Skłodowskiej

Podobne prezentacje


Prezentacja na temat: "Kwantowa teoria umysłu Uniwersytet Marii Curie-Skłodowskiej"— Zapis prezentacji:

1 Kwantowa teoria umysłu Uniwersytet Marii Curie-Skłodowskiej
Andrzej Łukasik Instytut Filozofii Uniwersytet Marii Curie-Skłodowskiej

2 Zastosowanie mechaniki kwantowej do badania umysłu - dwa programy badawcze
1. Umysł (mózg) jako obiekt materialny podlegający prawom mechaniki kwantowej; analogia między mózgiem a kwantowym komputerem R. Penrose, H. P. Stapp… 2. Quantum cognition: wykorzystanie elementów formalizmu mechaniki kwantowej (teorii przestrzeni Hilberta i kwantowej teorii prawdopodobieństwa) do modelowania czynności poznawczych i procesów decyzyjnych. Podejście funkcjonalne P. Bruza, J. R. Busemeyer, D. Aerts…

3 Quantum Cognition (kognitywistyka kwantowa)
Formalizm mechaniki kwantowej pozwala wyjaśnić tendencyjność w wydawaniu sądów. Procesy wydawania sądów i decyzji, które z punktu widzenia klasycznej teorii decyzji wydają się nieracjonalne (niezgodne z klasyczną logiką i klasycznym rachunkiem prawdopodobieństwa) mogą być adekwatnie modelowane formalizmem mechaniki kwantowej.

4 Tendencyjność w wydawaniu sądów
Systematyczne odstępowanie od wzorca idealnego rozumowania (rozumowanie niezgodne z logiką klasyczną i klasycznym rachunkiem prawdopodobieństwa) Skutek – systematyczne popełnianie błędów określonego rodzaju A. Tversky, D. Kahneman: ludzie wydając sądy nie kierują się racjonalnymi przesłankami i ścisłym rozumowaniem, ale tzw. heurystykami – uproszczonymi zasadami wnioskowania, czemu towarzyszy subiektywne przekonanie o słuszności Stosowanie heurystyk jest charakterystyczne dla wydawania sądów probabilistycznych i podejmowania decyzji w warunkach niepewności

5 Heurystyka reprezentatywności
Przykład: gra w lotto Który wynik losowania jest bardziej prawdopodobny?

6 Heurystyka reprezentatywności
Przykład: gra w lotto Który wynik losowania jest bardziej prawdopodobny? Odpowiedź: prawdopodobieństwo wylosowania dowolnego układu sześciu liczb jest dokładnie takie samo Wynik { } wydaje się „niereprezentatywny”, jak na wynik losowania, „nie wygląda” na losowy i jego prawdopodobieństwo jest powszechnie niedoszacowane – niezgodność z klasycznym rachunkiem prawdopodobieństwa

7 Heurystyka reprezentatywności Błąd hazardzisty (efekt Monte Carlo)
Rzut monetą: {0} – wygrywam 10 zł {R} – przegrywam 10 zł {R} {R} {R} {R} {R} Kto postawi 10 zł na {O}? {R} {R} {R} {R} {R} {R} {R} {R} {R} {R}

8 Heurystyka reprezentatywności Błąd hazardzisty (efekt Monte Carlo)
{R} {R} {R} {R} {R} {R} {R} {R} {R} {R} {R} {R} {R} {R} {R} Prawdopodobieństwo wyrzucenia orła (lub reszki) w każdym rzucie wynosi ½ (zdarzenia niezależne losowo) (ale prawdopodobieństwo serii {R} {R} {R} {R} {R} {R} {R} {R} {R} {R} wynosi p = 0,001 (iloczyn prawdopodobieństw 0,5 X 0,5 X … X 0,5) Większość ludzi jest przekonana, że po 10 wynikach {R} „musi wreszcie” wypaść {O} – niezgodność z klasycznym rachunkiem prawdopodobieństwa – przeceniamy prawdopodobieństwo zdarzenia; układ {R} {R} {R} {R} {R} {R} {R} {R} {R} {R} wydaje się niereprezentatywny błąd: oceniamy prawdopodobieństwo zdarzenia niezależnego na tle serii zdarzeń

9 Heurystyka reprezentatywności Błąd koniunkcji: problem Lindy
Linda jest trzydziestojednoletnią niezamężną, bezpośrednią i inteligentną kobietą. Ukończyła filozofię. Jako studentka była żywo zainteresowana kwestiami dyskryminacji i sprawiedliwości społecznej. Uczestniczyła również w demonstracjach antynuklearnych. Które ze stwierdzeń jest bardziej prawdopodobne: 1. Linda jest kasjerką bankową (A) 2. Linda jest kasjerką bankową (A) i aktywistką ruchu feministycznego (B)

10 Rezultaty badań empirycznych
85 % respondentów: bardziej prawdopodobne jest, że Linda jest kasjerką bankową i jednocześnie aktywistką ruchu feministycznego (Tversky A., Kahneman D., Judgment under uncertainty: Heuristic and biases, „Science” 1974, Vol.185, ss. 1124–1131). Błąd koniunkcji (conjunction fallacy): Rezultaty były podobne niezależnie od poziomu znajomości statystyki matematycznej wśród badanych studentów (studia licencjackie, magisterskie i doktoranckie). Klasyczna teoria prawdopodobieństwa (Kołmogorow) – zdarzenia A i B są określane jako podzbiory zbioru zdarzeń elementarnych. Iloczyn (część wspólna) zbiorów A i B nie może być większa niż jeden z tych zbiorów. Problem: czy ludzie zachowują się irracjonalnie, czy może klasyczna logika i klasyczna aksjomatyka prawdopodobieństwa są zbyt restrykcyjne w modelowaniu poznania?

11 Heurystyka dostępności
Kierowanie się tym przesłankami, które są łatwo dostępne w pamięci trwałej a pomijanie tych, które są trudniej dostępne Przykład: Oszacowanie częstości występowania w języku polskim nazwisk z przedostatnią literą K Rezultaty badań: częstość występowania nazwisk z przedostatnią literą K była niższa niż częstość nazwisk kończących się na SKI (chociaż w tej sekwencji liter jest _K_) Nazwiska kończące się na SKI łatwiej wydobyć z pamięci niż nazwiska mniej typowe, kończące się np. na IKA (Mika), ŃKA (Bańka)

12 Heurystyka zakotwiczenia i dopasowania
Przykład: Oszacować w 5 sekund wielkości iloczynów: 8 X 7 X 6 X 5 X 4 X 3 X 2 X 1 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 „zakotwiczenie” na większych wartościach (8, 7) prowadzi do zawyżenia oceny, „zakotwiczenie” na mniejszych wartościach (1, 2) prowadzi do zaniżenia oceny

13 Interferencja prawdopodobieństw
Jeżeli nie obserwujemy fotonu, to pojedynczy foton porusza się po dwóch drogach jednocześnie (superpozycja stanów)

14 Superpozycja stanów Stan układu jest reprezentowany przez wektor z zespolonej przestrzeni Hilberta Zasada superpozycji stanów: jeżeli układ może znaleźć się w stanie reprezentowanym przez i to może się znaleźć w stanie opisywanym przez dowolną kombinację liniową: ci – zespolone amplitudy prawdopodobieństwa

15 Pomiar i redukcja wektora stanu
Pomiar – redukcja wektora stanu: nieciągła i indeterministyczna zmiana stanu układu Można obliczyć prawdopodobieństwo rezultatu pomiaru: superpozycja pomiar – redukcja: albo :

16 Nieoznaczoność Istnieją pary wielkości fizycznych (np. pęd i położenie), których z przyczyn zasadniczych nie można jednocześnie zmierzyć z dowolną dokładnością. Operatory sprzężone nie komutują ze sobą: Kolejność pomiarów ma znaczenie: pomiar A „zaburza” B – nieoznaczoność

17 Prawdopodobieństwo

18 Prawdopodobieństwo klasyczne – Kołmogorow
Zdarzenia losowe są reprezentowane jako podzbiory zbioru zdarzeń elementarnych Spełnione są aksjomaty algebry Boole’a:

19 Prawdopodobieństwo kwantowe – von Neumann
Zdarzenia losowe są reprezentowane jako podprzestrzenie zespolonej przestrzeni Hilberta

20 Quantum Cognition zastosowanie elementów formalizmu mechaniki kwantowej do modelowania czynności poznawczych i procesów decyzyjnych kwantowe ujęcie prawdopodobieństwa (von Neumann) – prawdopodobieństwa są reprezentowane przez podprzestrzenie zespolonej przestrzeni Hilberta geometryczne podejście do prawdopodobieństwa

21 Reprezentacja przekonań
Przekonanie osoby na dany temat jest reprezentowane przez wektor z N-wymiarowej zespolonej przestrzeni Hilberta Wektory bazy reprezentują elementarne odpowiedzi TAK albo NIE na zadane pytanie B – Linda jest feministką nie-B – Linda nie jest feministką A – Linda jest kasjerką bankową nie-A – Linda nie jest kasjerką bankową

22 Pomiar kognitywny Pomiar kognitywny (np. odpowiedź na pytanie) jest reprezentowany przez proces rzutowania wektora stanu na podprzestrzeń przestrzeni Hilberta Operator rzutowy:

23 Kwantowe prawdopodobieństwo
Prawdopodobieństwo określonej odpowiedzi na pytanie jest równe kwadratowi rzutu wektora na odpowiednią podprzestrzeń

24 Unormowanie Po ustaleniu się przekonania na pytanie B następuje redukcja wektora stanu. Nowy wektor stanu przybiera postać:

25 Efekt kolejności pomiarów
Szacowanie prawdopodobieństw zależy od kolejności zadanych pytań: jeśli najpierw ustali się przekonanie na pytanie B (o feminizm) a następnie na pytanie A (kasjerka) to wyjaśnienie efektu dysjunkcji – zależność rezultatów pomiarów od kolejności (i kontekstu)

26 Podsumowanie Formalizm mechaniki kwantowej (kwantowa teoria prawdopodobieństwa) pozwala w niektórych przypadkach na lepsze modelowanie procesów poznawczych i decyzyjnych W funkcjonowaniu ludzkiego umysłu można dostrzec typowo kwantowe efekty: zależność przekonań od kolejności pomiarów kognitywntych (zależność od kontekstu) zaburzanie jednych pomiarów kognitywnych przez inne efekty superpozycji przekonań odzwierciedlające przekonania ambiwalentne, konflikt i niepewność Program badawczy Quantum Cognition pozwala modelować czynności poznawcze i procesy decyzyjne paradoksalne z punktu widzenia klasycznej teorii prawdopodobieństwa.

27 Literatura J. R. Bruza, P. D. Busemeyer, Quantum Models of Cognition and Decision, Cambridge University Press, Cambridge 2014 Artykuły w “Topics in Cognitive Science” Vol. 5, No 4 (2013) R. Shankar, Mechanika kwantowa, Wydawnictwo Naukowe PWN, Warszawa 2007 S. Szpikowski, Podstawy mechaniki kwantowej, Wyd. UMCS, Lublin 2006 R. Penrose, Nowy umysł cesarza. O komputerach, umyśle i prawach fizyki, Wydawnictwo Naukowe PWN, Warszawa 1996 (rozdz. 6 „Tajemnica kwantowej magii, s ) P. C. W. Davis, J. R. Brown, Duch w atomie. Dyskusja o paradoksach teorii kwantowej, Wyd. CIS, Warszawa 1996 W. Heisenberg, Fizyka a filozofia, Książka i Wiedza, Warszawa 1965 N. Bohr, Fizyka atomowa a wiedza ludzka, PWN, Warszawa 1963 D. Bohm, Ukryty porządek, Wyd. Pusty Obłok, Warszawa 1988 Cz. Białobrzeski, Podstawy poznawcze fizyki świata atomowego, PWN, Warszawa 1984 M. Planck, Jedność fizycznego obrazu świata, Książka i Wiedza, Warszawa 1970 E. Schrödinger, Czym jest życie. Umysł i materia. Szkice autobiograficzne, Prószyński i S-ka, Warszawa 1998. R. P. Feynman, Charakter praw fizycznych, Prószyński i S-ka, Warszawa 2000. A. Łukasik, Filozofia atomizmu. Atomistyczny model świata w filozofii przyrody, fizyce klasycznej i współczesnej a problem elementarności, Wyd. UMCS, Lublin 2006 F. Selleri, Wielkie spory w fizyce kwantowej, Wyd. Uniwersytetu Gdańskiego, Gdańsk 1999 Strona arXiv.org – w wyszukiwarce wpisujemy :quantum cognition

28 Dziękuję za uwagę Andrzej Łukasik


Pobierz ppt "Kwantowa teoria umysłu Uniwersytet Marii Curie-Skłodowskiej"

Podobne prezentacje


Reklamy Google