Pobierz prezentację
OpublikowałJędrzej Wycisk Został zmieniony 11 lat temu
1
Prognozowanie na podstawie modelu ekonometrycznego
2
Ogólna postać modelu i prognozy
3
Założenia teorii prognozy ekonometrycznej
znany musi być „dobry model” w sensie wcześniej podanych kryteriów oceny jakości modelu, występować musi stabilność relacji strukturalnych w czasie, co oznacza, że postać modelu i wzajemne oddziaływanie zmiennych są stałe, aż do momentu lub okresu prognozowanego włącznie, składnik losowy musi mieć stały rozkład w czasie, co oznacza, że nie pojawią się żadne inne ważne czynniki oddziałujące na prognozowane zjawisko, dotychczasowe zaś nie zmienią swego oddziaływania, zgodnie z założeniem 2, znane muszą być wartości zmiennych objaśniających (lub ich rozkłady prawdopodobieństwa) w okresie lub momencie prognozowanym, model może być ekstrapolowany poza jego dziedzinę.
4
Błąd ex ante prognozy Dla modelu liniowego ze znanymi wartościami zmiennych objaśniających dla okresu prognozy: Przedział wiarygodności prognozy:
5
Przykłady prognoz na podstawie modeli ekonometrycznych
Na podstawie danych z 12 miesięcy zbudowano model opisujący wielkość obrotów w tys. zł zakładu usługowego (zmienna Y) w zależności od wydatków na reklamę w tys. zł (X). Po oszacowaniu parametrów modelu otrzymano następujące charakterystyki: Wyznaczyć prognozę obrotów na kolejny miesiąc wiedząc, że w ostatnim miesiącu obroty te wyniosły 10 tys. zł, wydatki na reklamę 2 tys. zł, a macierz wariancji-kowariancji ocen parametrów modelu ma postać: .
6
Prognozę na kolejny miesiąc wyznaczymy podstawiając znane wartości zmiennych objaśniających do równania regresji: . Zatem w kolejnym miesiącu spodziewane są obroty wysokości 11,5 tys. zł. Wyznaczymy teraz przedział wiarygodności dla tej prognozy, co wymaga oszacowania wielkości błędu standardowego prognozy ex ante ze wzoru: Z prawdopodobieństwem 0,95 wielkość obrotów w następnym miesiącu będzie się mieścić w przedziale (8,97 ; 14,03) [tys. zł].
7
Przykład 2 Bank „BZSiP” zlecił wykonanie prognozy wysokości udzielanych miesięcznie kredytów konsumpcyjnych. Na podstawie trzyletnich danych zbudowano model kwoty kredytów w tys. zł (Y) w zależności od (średniego miesięcznego) kursu dolara w zł (X1) oraz od stosunku rocznego oprocentowania kredytu do stopy inflacji w miesiącu poprzedzającym udzielanie kredytu (X2): . Wyznaczyć prognozę wysokości udzielonych kredytów na cztery kolejne miesiące wiedząc, że przewidywany kurs dolara (wg prognoz NBP) wyniesie w kolejnych miesiącach 3,20, 3,18, 3,17, 3,17 zł. Bank zamierza w pierwszym miesiącu udzielać kredytów o stopach przekraczających inflację o 15%, zaś w następnych miesiącach o 18%. Dla okresu estymacji modelu otrzymano macierz oraz standardowy błąd szacunku zmiennej objaśnianej w wysokości 5,59 [tys. zł].
8
Model trendu liniowego
9
Model regresji ze zmiennymi sezonowymi
10
Model regresji ze zmiennymi czasową i sezonowymi (addytywnymi)
11
– oceny parametrów wyznaczone MNK
Model autoregresji – oceny parametrów wyznaczone MNK
12
Ocena dopuszczalności prognozy
Do oceny dopuszczalności prognoz stosuje się błędy prognoz – bezwzględne lub względne, w miarę możliwości ex ante, ale dla niektórych metod także błędy ex post prognozy wygasłych. Na ogół uznaje się prognozę za dopuszczalną, jeśli spodziewany błąd nie powinien przekroczyć podanej z góry i arbitralnie wartości krytycznej. Maksymalny horyzont prognozy: należący do przyszłości najdalszy moment lub okres, w którym prognoza jest dopuszczalna. Żądany horyzont prognozy: horyzont prognozy wyznaczony przez odbiorcę, nie może on jednak być dłuższy od horyzontu maksymalnego.
13
Względny błąd ex ante Załóżmy, że w powyższych przykładach maksymalny błąd prognozy miał wynosić 6%. W przykładzie 1 względny błąd prognozy ex ante na moment 13 zatem prognoza nie jest dopuszczalna.
14
Zmienne objaśniające: x*1 t x*2 t Ocena ex ante: prognoza
Dla przykładu 2: Zmienne objaśniające: x*1 t 3,2 3,18 3,17 x*2 t 1,15 1,18 Ocena ex ante: prognoza 250,25 242,21 242,43 błąd bezwzględny 5,78 5,73 5,72 błąd względny 2,3% 2,4% Jak widać, wszystkie prognozy można uznać za dopuszczalne, zatem żądany horyzont prognozy jest mniejszy niż maksymalny (dopuszczalny) horyzont prognozy.
15
Przykład 3 Ocenić, jaki jest maksymalny horyzont prognozy dla modelu trendu liniowego szacowanego na podstawie 13 obserwacji Wiadomo, że Se = 4,3. Przyjąć, że wartość krytyczna błędu ex ante prognozy wynosi 5%.
Podobne prezentacje
© 2024 SlidePlayer.pl Inc.
All rights reserved.