Pobierz prezentację
Pobieranie prezentacji. Proszę czekać
OpublikowałIwona Kurzyna Został zmieniony 11 lat temu
1
Opisy funkcji Adres strony WWW : http://www.gnu.org/software/libc/manual/html_node/index. html http://www.gnu.org/manual/glibc- 2.0.6/html_node/libc_528.html http://www.gnu.org/manual/glibc- 2.0.6/html_node/libc_528/html
2
adres zmiennej Do pobrania adresu zmiennej używa się jednoargumentowego operatora & (uwaga & może mieć także znaczenie dwuargumentowego operatora bitowego iloczynu logicznego) Jednoargumentowy operator * jest używany do wskazywania, tzn. jego argument jest adresem zmiennej.
3
adres zmiennej - przyklad #include int main() { int k; int n; int *palec; palec=&k; k=10; n=(*palec)*15; printf("\n\nk=%5d n=%5d *palec=%5d\n",k,n,*palec); exit(0); } /* koniec funkcji main */ k= 10 n= 150 *palec= 10
4
Wskaźniki-0 Czy wskaźnik musi mieć typ ? Czy może istnieć wskaźnik uniwersalny? Jeśli tak to: Czy można się posługiwać tylko wskaźnikami uniwersalnymi?
5
Wskaźniki-1 # include int main() { float a[10]={0.,1.,2.,3.,4.,5.,6.,7.,8.,9.}; float * f1; /* wskaźnik do float */ int * p1; /* wskaźnik do int */ void * s1; /* wskaźnik uniwersalny */ f1 = &a[3]; p1 = &a[5]; /* kompilator zgłosi zastrzeżenia */ s1 = &a[7];
6
Wskaźniki-2 p1 = s1; /* kompilator OK */ p1 = (int *) s1; /* kompilator OK */ p1 = (int *) f1; /* kompilator OK */ /* nie ma sensu p1 = & 123L; */ printf("\n %d %p %x\n", *p1,p1,p1); printf("\n %f\n", *f1); return (0); } /* koniec funkcji main */
7
Wskaźniki-3 1077936128 0xbffffa4c bffffa4c 3.000000
8
Wskaźniki-4 # include int main() { int * p1; /* wskaźnik do int */ void * s1; /* wskaźnik uniwersalny */ p1=NULL; printf("\n %d \n", *p1); /* segmentation fault */ printf("\n %p \n", p1); return (0); } /* koniec funkcji main */
9
Wskaźniki-5 wynik programu: Segmentation fault (core dumped) (nil)
10
Wskaźniki-6 #include int main() { int * p1; /* wskaźnik do int */ void * s1; /* wskaźnik uniwersalny */ p1 = (int *) 1; printf("\n %d \n", *p1); /* segmentation fault */ printf("\n %p \n", p1); return (0); } /* koniec funkcji main */ 0x1
11
Wskaźnik-7 #include int main() { float x; float * f2; /* wskaźnik do zmiennej typu float */ f2 = & x ; /* !!!! wskaźnik wskazuje na coś rozsądnego */ *f2 = 23.4; printf("\n wartość x wynosi %5.2f\n",x); return (0); } /* koniec funkcji main */ wynik : 23.40
12
Wskaźniki-8 ( wskaźniki jako argument funkcji call.c str. 213) #include void inc_count(int *count_ptr) { ++(*count_ptr); /* po co nawiasy zwykłe ? */ } /* koniec funkcji inc_count */ int main ( ) { int count=0; /* licznik pętli */ while(count<10) inc_count(&count); printf("\n count=%d\n",count); }/* koniec funkcji main */
13
Wskaźniki-8 (dygresja) #include int main() { int alfa=10; int * wsk;
14
Wskaźniki-8 (dygresja) wsk=&alfa; ++(*wsk); printf("\n alfa=%d wsk=%p",alfa,wsk);/* 11 0xbffff2d4 */ ++*wsk; printf("\n alfa=%d wsk=%p",alfa,wsk);/* 12 0xbffff2d4 */ (*wsk)++; printf("\n alfa=%d wsk=%p",alfa,wsk);/* 13 0xbffff2d4 */ *wsk++; printf("\n alfa=%d wsk=%p",alfa,wsk); );/* 13 0xbffff2d8 */ exit(0);/* dobrze, że koniec, bowiem na co wskazuje wsk ?*/ } /* koniec funkcji main */
15
Dygresja #include int main() { int a=11,b=21,c; c=a+++b++;/* dla pewności lepiej użyć nawiasów ! */ printf(" a,b,c %d %d %d\n", a, b, c); /* wypisze 12 22 32 */ exit(0); } /* koniec funkcji main */
16
Wskaźniki-9 (wskaźniki a macierze) float as[10]; /* każdy element ma długość 4 bajtów */ float * p3; p3 = & as[0]; /* lub */ p3=as; *p3=7; as[0]=7; *(p3+1)=8; as[1]=8;
17
Wskaźniki-10 (wskaźniki a macierze) float as[10]; /* każdy element ma długość 4 bajtów */ float * p3; p3=as; p3+=4; /* p3 = p3 +4 */ *p3=9; /* as[4]=9; */ /* dodawanie liczby całkowitej do wskaźnika skaluje się automatycznie */
18
Wskaźniki-10 (dygresja) #include int main() /*czy nazwa macierzy jest pełnoprawnym wskaźnikiem?*/ { int nowa[5]={10,11,12,13,14}; /* inicjalizowanie macierzy */ int * wsk; wsk = nowa; printf("%d %d\n", *wsk, *nowa); /* 10 10 */ printf("%d %d\n", *(wsk+1), *(nowa+1));/* 11 11 */ wsk++; /* wskaźnik wsk wskazuje na następną zmienną typu int*/ /* nowa++; tego kompilator nie zaakceptuje...*/ exit(0); }/* koniec funkcji main */
19
Wskaźniki-11 #include int main ( ) { float x; void * p2; float * p4; x=14; p2=&x; p4=&x; /* printf("\n %f\n",*p2); !!?? błędnie! */ printf("\n %f\n",*(float *)p2); printf("\n %f\n",*p4); }/* koniec funkcji main */
20
Wskaźniki-12 int main() char bufa[100]=Uniwersytet; char bufb[120];........ copy_string(bufb,bufa); copy_string(&bufb[0],&bufa[0]);..... /* koniec funkcji main */
21
Wskaźniki-13 (str. 220) void copy_string (char *p, char *q) { while ( *p++ = *q++ ) } /* koniec funkcji copy_string */ /* while( *(p++) = *(q++) ) czytelniejsze! */
22
Wskaźniki (wskaźnik do funkcji) #include int f1(float); int f2(float); void zz ( int(*aa)(float), float t ); int (*f)(float); /* f jest wskaźnikiem do funkcji ! */ int main( ) { int n; scanf("%d",&n);
23
Wskaźniki (wskaźnik do funkcji) if(n==1) { f=f1; zz(f, (float)n ); } else if(n==2) {f=f2; zz(f, (float)n ); } exit(0); } /* koniec funkcji main */
24
Wskaźniki (wskaźnik do funkcji) int f1(float x) {printf("\n wewnatrz f1 x=%f\n",x); return(0); }/* koniec funkcji f1 */ int f2(float x) { printf("\n wewnatrz f2 x=%f\n",x); return(0); }/* koniec funkcji f2 */ void zz ( int(*aa)(float), float t ) { (*aa)(t); } /* koniec funkcji zz */
25
Wskaźnik powinien na coś wskazywać (choćby na NULL) float * f4 = NULL; /* trzeba uważać by obiekt wskazywany nie zniknął !! */
26
pointer.c #include /* prototyp */ char *dec_bin (unsigned long a); int main () { char *bin_p; bin_p = (dec_bin (119L)); /* 119 to dziesietnie znak w */ printf ("\nTeraz w main: %p\n", bin_p); printf (" Czyli:%c\n\n", *(bin_p)); exit(0); } /* koniec funkcji main */ char * dec_bin (unsigned long dec) { char *wsk; char litera_b; litera_b=dec; printf ("\n wewnatrz funkcji: dec=%ld\n", dec); wsk = &litera_b; printf ("\nwewnatrz funkcji: %p\n", wsk); printf (" Czyli:%c\n\n", *wsk); return (wsk); } /* koniec funkcji dec_bin */
27
operatory bitowe umożliwiają korzystanie, wykonywanie działań na pojedynczych bitach; zaś np. operator dodawania działa na całej zmiennej! & koniunkcja bitowa | alternatywa bitowa ^ różnica symetryczna ~ negacja bitowa << operator przesunięcia w lewo >> operator przesunięcia w prawo
28
operatory bitowe - & bit 1bit 2bit1 & bit2 0 0 0 1 0 0 0 1 0 1 1 1 int c1,c2,c3; c1=0x45; c2=0x71; c3=c1&c2; /* c3 jest równe 0x41 = 65 dziesiętnie */
29
operatory bitowe - | bit 1bit 2bit1 | bit2 0 0 0 1 0 1 0 1 1 1 1 1 int c1,c2,c3; c1=0x47; c2=0x53; c3=c1 | c2; /* c3 jest równe 0x57= 87 dziesiętnie*/ 0 1 0 0 0 1 1 1 0x47 0 1 0 1 0 0 1 1 0x53 0 1 0 1 0 1 1 1 0x57
30
operatory bitowe - ^ bit 1bit 2bit1 & bit2 0 0 0 1 0 1 0 1 1 1 1 0 int c1,c2,c3; c1=0x47; c2=0x53; c3=c1 ^ c2; /* c3 jest równe 0x14= 20 dziesiętnie */ 0 1 0 0 0 1 1 1 0x47 0 1 0 1 0 0 1 1 0x53 0 0 0 1 0 1 0 0 0x14
31
operatory bitowe - ~ bit ~bit 0 1 1 0 int c1,c3; c1=0x45; c3=~c1; /* c3 jest równe 0xFFFFFFBA= 186 dziesiętnie */
32
operatory bitowe - << przesuwa w lewo o określona ilość bitów uwaga – przesunięte bity znikają, a nie pojawiają się z prawej strony c 0x1C 00011100 c<<1 0x38 00111000 c>>2 0x07 00000111
33
operatory bitowe - >> jest w nim pewna pułapka, mianowicie miejsce wolne jest zastępowane bitem znaku! np. int k=-1; int l; l=k>>1; /* l jest równe minus jeden ! */
34
Jak bit ustawic? na przykład chcemy ustawić trzeci bit na jeden int k=1<<3; /* k = 8 dziesiętnie */ int n; n|=k; n=n|k;
35
Jak bit testowac? na przykład chcemy sprawdzić trzeci bit int k=1<<3; /* k = 8 dziesiętnie */ int n; if( (n&k)!=0 ) printf( trzeci bit =1 ); else printf( trzeci bit =0 );
36
Jak bit usunąć? na przykład chcemy ustawić trzeci bit na zero int k=1<<3; /* k = 8 dziesiętnie */ int n; n&=~k; n=n & (~k);
37
pola bitowe int main() { struct aka{ int k:3; int n:3; } beta; beta.n=1; while(1) { printf("\nbeta.n=%d",beta.n); beta.n+=1; /* beta.n=beta.n+1; } exit(0); } /* koniec funkcji main */
38
wynik programu beta.n = 1 beta.n = 2 beta.n = 3 beta.n = -4 beta.n = -3 beta.n = -2 beta.n = -1 beta.n = 0 beta.n = 1
39
extern #include extern float alfa; /* plik extern1.c */ int main() { printf("\n alfa=%10.4f\n",alfa); return(0); } /* koniec funkcji main */ float alfa=-66; /* plik extern1a.c */ /* gcc -Wall -ansi extern1.c extern1a.c
40
extern # include extern float alfa; float alfa=4; /* jeden plik zrodlowy */ int main() { printf("\n alfa=%10.4f\n",alfa); return(0); } /* koniec funkcji main */
41
malloc (dynamiczna alokacja pamięci) #include struct st { int pole1; int pole2; float pole3; double buf[100000]; } z1, *p1, *p2; main() { p1= &z1; p1->pole1=11.; p1->pole2=13.; p1->pole3=15.; printf("\n"); printf(" pole1 %5d pole2 %5d pole3 %11.3f\n",z1.pole1,z1.pole2,z1.pole3); printf(" sizeof...%d \n\n",sizeof(z1) ); while(1) { p2=malloc(sizeof(z1)); if( p2==NULL) { printf("\n.....zabraklo pamieci..."); break; } (*p2).pole1=21; (*p2).pole2=22; (*p2).pole3=23; /* free(p2);*/ } } /* koniec main*/
Podobne prezentacje
© 2024 SlidePlayer.pl Inc.
All rights reserved.