Pobierz prezentację
Pobieranie prezentacji. Proszę czekać
1
Metody Numeryczne wykład no 6
2
Rozwiązywanie równań algebraicznych
f(x)=0 Metoda bisekcji Przykład: x -1 -0.5 -0.25 -0.125 f(x) -4 1 -1.125 x f(x)
3
x f(x) Zaleta metody: Jeżeli pierwiastek istnieje, to go znajdziemy. Wada metody: Duża liczba obliczeń Regula falsi. Założenia: funkcja ma w przedziale [a,b] tylko jeden pierwiastek i zachodzi f(a)f(b)<0, b) jest funkcja jest klasy C2[a,b], pierwsza i druga pochodna nie zmieniają znaku na przedziale [a,b].
4
Funkcja spełniająca powyższe założenia musi mieć w otoczeniu
miejsca zerowego jeden z następujących przebiegów: y y f(b) f(b) a a x x b b f(a) f(a) y y f(a) f(a) b b a a x x f(b) f(b)
5
Przebieg obliczeń metodą regula falsi:
y f(b) f(x1) a x x2 x1 b f(a) analitycznie: ustalamy koniec z warunku f(x1)f(a)<0 lub f(x1)f(b)<0 Prowadzimy prostą:
6
ale f(x1)=0 stąd lub Dla n-tej iteracji mamy b=xn-1 i podstawiając mamy:
7
Ocena błędu dla dostatecznie małego przedziału [xn-1,xn]
można przyjąć jako: Metoda regula falsi jest zbieżna dowolnej funkcji ciągłej na przedziale [a,b]. Poszukiwanie pierwiastka zostaje zakończone jeżeli: Metoda jest wolno zbieżna. Przykład:
8
w metodzie bisekcji potrzebowaliśmy
x -1 -0.2 f(x) -4 1 0.192 Ponieważ f(-1)=-4, a f(x1)=0.192, więc stałym punktem będzie x=-1 w metodzie bisekcji potrzebowaliśmy 14 kroków x f(x) ocena błędu: x f(x)
9
ocena błędu: Metoda siecznych Przepis: Przykład: x -1 -0.2 f(x) -4 1 0.192 w regula falsi potrzeba 8 kroków
10
x f(x) 0.907E-8 w 6-tym kroku Koniecznie trzeba obliczać f(xn) i jeżeli zaczyna narastać należy zawęzić przedział i powtórzyć obliczenia. Niebezpieczeństwo znalezienia fałszywego pierwiastka. Metoda szybsza niż reguła falsi. Pierwsza iteracja musi startować z punktów spełniających warunek: f(a)f(b)<0 x1 a b
11
Pomijając małe drugiego rzędu 2 mamy, że f(x+)=0,
Metoda Newtona - Raphsona Niech małe w mamy: Pomijając małe drugiego rzędu 2 mamy, że f(x+)=0, jeżeli Graficznie: y Równanie prostej stycznej w punkcie xn jest: n x xn+1 xn
12
W 3 krokach dokładność osiągana w metodzie siecznych
Prosta: przechodzi przez zero, czyli y=0, w punkcie xn+1 i mamy: Przykład: x -0.25 f(x) 1 -0.2E-10 W 3 krokach dokładność osiągana w metodzie siecznych w 5 krokach
13
Metoda Newtona – Raphsona jest zbieżna kwadratowo, tzn.
W obliczeniach numerycznych pochodną najczęściej oblicza się numerycznie: f(x) „Pechowe” przypadki: x2 rozbieżna x Zmniejszyć przedział [xd,x0] xd x1 x0
14
Budując procedurę należy się zabezpieczyć przed taką możliwością.
f(x) cykl x2=x4=... x xd x1=x3=... Budując procedurę należy się zabezpieczyć przed taką możliwością. Wystartować z punktu x1 znajdującego się bliżej xd Pierwiastki wielokrotne: Przy pierwiastkach wielokrotnych badać funkcję:
15
Pierwiastki zespolone
Przykład Szukamy zespolonych pierwiastków metodą Newtona - Raphsona
16
Jako punkt startowy musimy wybrać liczbę zespoloną:
x0=i gdzie xd= i x2= i x3= i x4= i x5= i x6= i błąd= i
17
Układy równań nieliniowych
Dany jest układ równań: Dla skrócenia zapisu wprowadzamy oznaczenia: oraz
18
i równanie zapisujemy krótko:
Metoda iteracji prostej Równanie: zapisujemy w postaci: i procedura iteracji prostej ma postać: Stosowana szczególnie w przypadkach jeżeli mamy dobre przybliżenie początkowe. Sytuacja taka występuje np. w przypadku małej zmiany parametrów równania.
19
Przykład: którego rozwiązaniem jest: x1=1; y1=0 oraz x2=-1; y2=0 Szukamy rozwiązania układu po małej zmianie parametrów: mamy schemat iteracyjny: Jako startowy punkt wybieramy: x0=1; y0=0 i mamy:
20
n 1 2 3 4 xn yn n 5 6 7 8 xn yn n 9 10 11 12 xn yn
21
Z przedstawionych obliczeń widać, że metoda jest wolno
zbieżna i dlatego stosowana tylko w przypadkach, gdy znamy bardzo dobrze zerowe przybliżenie. Zastosowanie w równaniach różniczkowych. Metoda Newtona - Raphsona Rozwijamy funkcję fk(X) w szereg Taylora w otoczeniu punktu Xi:
22
Dla uproszczenia zapisu wprowadzamy macierz Jacobiego
zdefiniowaną następująco:
23
i w postaci macierzowej możemy krótko zapisać układ równań:
gdzie oznaczono: i rozwiązując symbolicznie mamy:
24
Przykład
Podobne prezentacje
© 2024 SlidePlayer.pl Inc.
All rights reserved.