Pobierz prezentację
Pobieranie prezentacji. Proszę czekać
OpublikowałKarina Lenczewski Został zmieniony 9 lat temu
1
Symetria kryształów Elementy symetrii kryształów – prawidłowe powtarzanie się w przestrzeni jednakowych pod względem geometrycznym i fizycznym części kryształów: np. ścian, krawędzi, naroży określane jest mianem symetrii kryształów. Symetria przejawia się w postaciach, strukturze i właściwościach fizycznych kryształów. Symetrię określa się za pomocą tzw. makroskopowych elementów symetrii, czyli dających się zaobserwować na wielościennej postaci kryształu.
2
środek symetrii kryształu
osie symetrii kryształu
3
Płaszczyzny symetrii
4
Proste elementy symetrii kryształu
środek symetrii – punkt położony wewnątrz kryształu, który ma tę własność, że na dowolnej prostej przeprowadzonej przez ten punkt, w jednakowej od niego odległości, znajdują się jednakowe pod względem geometrycznym i fizycznym punkty kryształu. oś symetrii – prosta, wokół której powtarzają się jednakowe części kryształu, przy czym te części mogą się powtarzać co kąt α = 60°, 90°, 120°, 180°, 360°, liczbę n = 360/α nazywa się krotnością osi symetrii; w kryształach możliwe są osie jedno-, dwu-, trzy- cztero-, sześciokrotne. płaszczyzny symetrii – płaszczyzny dzielące kryształ na dwie części pozostające względem siebie w takim stosunku jak przedmiot do swego obrazu w zwierciadle płaskim.
5
Złożone elementy symetrii
oś inwersyjna – działa w ten sposób, że dana część kryształu powtarza się dopiero po wykonaniu przekształceń względem środka i osi symetrii. oś przemienna (oś zwierciadlana) – oś otrzymana przez sprzężenie osi symetrii z prostopadłą do niej płaszczyzną symetrii.
6
Symetria 1) symetria translacyjna, cecha wyróżniająca kryształy spośród innych faz skondensowanych. Występowania symetrii translacyjnej w budowie wewnętrznej kryształów dowodzi zachodzenie na nich zjawiska dyfrakcji promieni X (rentgenografia), a także dyfrakcji strumieni cząstek elementarnych (elektronografia, neutronografia).
7
Symetria (cd.) 2) symetria postaci zewnętrznej kryształów, monokryształy danej substancji wyrastają (w przypadku braku zakłóceń z zewnątrz) w postaci wielościanów, których elementy symetrii punktowej odpowiadają jednej z 32 klas krystalograficznych. Ta symetria kształtów odpowiada symetrii ich właściwości makroskopowych, opisywanych za pomocą tensorów.
8
Symetria (cd.) 3) symetria sieci przestrzennej kryształu (sieć krystaliczna), symetria punktowa modelu danego kryształu, zwanego jego siecią przestrzenną. Każdy z 14 możliwych typów sieci Bravais’ego wykazuje jedną z siedmiu możliwych grup symetrii punktowej sieci przestrzennych, co prowadzi do podziału wszystkich kryształów na siedem układów Bravais’ego.
9
Symetria (cd.) 4) symetria dyfrakcyjna kryształów, symetria punktowa obrazu dyfrakcyjnego, pozwalająca przypisać każdy kryształ do jednej z 11 tzw. klas Lauego (lauegram).
10
Symetria (cd.) 5) symetria struktury kryształu, czyli pełny opis symetrii jego budowy wewnętrznej, który prowadzi do określenia przynależności danego kryształu do jednego z 230 typów grup przestrzennych. Ta symetria kształtów ułatwia rozszyfrowywanie ich struktur z pomiarów dyfrakcji na kryształach, upraszcza opis ich budowy i ustalenie typu struktury.
11
Element symetrii: n-krotna oś obrotu;
Obroty Operacja symetrii: obrót o kąt φ= 360o/n, gdzie n jest liczbą całkowitą= 1, 2, 3, 4 lub 6; Element symetrii: n-krotna oś obrotu;
12
Pierwszy obrót Drugi obrót
Przykład: obrót dwukrotny Rotacja o 180o= 360o/2 2. 2 = symbol = symbol graficzny osi dwukrotnej;
13
Obrót trzykrotny Przykład: obrót trzykrotny obrót o 120o = 360o/3
3 = symbol= symbol graficzny
14
Dziękuję za obejrzenie mojej prezentacji
Tu wpisz swoje imię i nazwisko
Podobne prezentacje
© 2024 SlidePlayer.pl Inc.
All rights reserved.