Pobierz prezentację
Pobieranie prezentacji. Proszę czekać
OpublikowałFrydrych Gębski Został zmieniony 9 lat temu
1
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1 Teoria sterowania – traktuje elementy układu sterowania jak i sam układ sterowania jako system System: Klasyfikacje: - Liniowy - nieliniowy - Stacjonarny - niestacjonarny
2
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania2 Klasyfikacje: c.d. - Jednowymiarowy (SISO) – wielowymiarowy (MIMO) Klasyfikacja w odniesieniu do liczby zmiennych wejścia - wyjścia - Czasu ciągłego – czasu dyskretnego Klasyfikacja w odniesieniu charakteru sygnałów wejścia i wyjścia
3
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania3 Wybrane elementy wprowadzenia do teorii sterowania Systemy liniowe, stacjonarne, ze sprzężeniem zwrotnym
4
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania4 Przedstawiają one prawo przetwarzania sygnału wejściowego obiektu u(t) w sygnał wyjściowy obiektu y(t) bezpośrednio lub z wykorzystaniem zmiennych stanu x(t) Prawo to umożliwia dla danego kształtu u(t) i znanych odpowiednich wartości początkowych określić kształt y(t) Jak możemy traktować modele obiektów dynamicznych? Czy to trudne zadanie? Dla układów liniowych ze stałymi współczynnikami – nie
5
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania5 Rozważamy najpierw równanie modelu wejście – wyjście w którym nie występują pochodne sygnału wejścia z warunkami początkowymi: Czy potrafilibyśmy zbudować urządzenie, które rozwiązywałoby takie równanie? Schematy analogowe (1) (2)
6
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania6 Taką samą strukturę mają poszczególne równania stanu w modelu stanu z warunkiem początkowym: (3) (4) lub:
7
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania7 Czy potrafimy zbudować sumator (układ elektroniczny)? - + UfUf RfRf ifif igig egeg - K U wy U we1 R1R1 i1i1 U we1 U we2 U we2 R2R2 i2i2
8
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania8 Czy potrafimy zbudować integrator (układ elektroniczny)? ufuf - + CfCf R i we igig ifif egeg u we u wy u we -K R we, R wy
9
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania9 Zapiszmy: oraz warunki początkowe: (2a) (1a) Dla równania modelu wejście – wyjście
10
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania10 - zadawanie warunków początkowych - uzyskiwanie pochodnych niższych rzędów – idea całkowania równania - uzyskiwanie najwyższej pochodnej
11
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania11 Schemat analogowy rozwiązywania równania różniczkowego z warunkami początkowymi: (1) (2)
12
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania12 Zapiszmy: oraz warunek początkowy: (4a) (3a) Dla równania stanu modelu przestrzeni stanu
13
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania13 A jeżeli występują pochodne sygnału wejścia? Przykład Równanie: Warunki początkowe
14
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania14 Zapiszmy równanie: Scałkujmy je jednokrotnie: C 2 wyznaczymy kładąc t=0 i korzystając z warunków początkowych
15
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania15 Powtórzmy operację całkowania: C 1 wyznaczymy kładąc t=0 i korzystając z warunków początkowych
16
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania16 Wykonajmy operacje całkowania po raz trzeci C 0 wyznaczymy kładąc t=0 i korzystając z warunków początkowych
17
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania17 Poznaliśmy metodę kolejnych całkowań – metodę postaci kanonicznej
18
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania18 Jeżeli występują pochodne sygnału wejścia a warunki początkowe są zerowe dogodniejsza jest metoda zmiennej pomocniczej Przykład Równanie: Warunki początkowe
19
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania19 Przykład 1 – czwórnik RC Przykład 2 – dwójnik RL Rozważaliśmy dotychczas w dziedzinie czasu zachowanie się obiektu dynamicznego w przedziale czasu od t 0 do t opisywanego równaniem różniczkowym Transformacja Laplace’a i transmitancja operatorowa z warunkiem początkowym:
20
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania20 Dla dowolnego wejścia u(t) określonego w przedziale [t 0,t] pełna odpowiedź obiektu Ogólna struktura: Obiekt u(t) y(t) (1a) (1b)
21
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania21 Dokonamy przejścia do dziedziny zmiennej zespolonej s Załóżmy, że zarówno funkcja (reprezentacja matematyczna sygnału) u(t) – wejście, jak i y(t) – wyjście, spełnia warunki pozwalające poddać je przekształceniu Laplace’a Pamiętać powinniśmy o warunkach jakie muszą spełniać funkcje f(t) (funkcje czasu) poddawane transformacji Laplace’a Transformację Laplace’a możemy stosować do systemów liniowych (czyli spełniających zasadę superpozycji) i stacjonarnych (czyli spełniających zasadę niezmienniczości w czasie)
22
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania22 Funkcja f(t) musi spełniać (L1) Całka musi istnieć (być zbieżna) (L2) Poddając transformacji Laplace’a obydwie strony (1a) i uwzględniając znajomość (1b) otrzymamy (2)
23
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania23 Rozwiązując (2) ze względu na Y(s) Składowa swobodna odpowiedzi Składowa wymuszona odpowiedzi Składowa swobodna: Składowa wymuszona:
24
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania24 Transformata Laplace’a składowej wymuszonej: gdzie, - Transmitancja operatorowa obiektu dynamicznego I definicja transmitancji obiektu dynamicznego Transmitancją operatorowa obiektu dynamicznego (liniowego, stacjonarnego) nazywamy stosunek transformaty Laplace’a składowej wymuszonej odpowiedzi tego obiektu na wymuszenie do transformaty Laplace’a tego wymuszenia lub inaczej: Transmitancją operatorowa obiektu dynamicznego (liniowego, stacjonarnego) nazywamy stosunek transformaty Laplace’a odpowiedzi tego obiektu na wymuszenie uzyskanej przy zerowym warunku początkowym, do transformaty Laplace’a tego wymuszenia
25
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania25 (ii) G(s) – nie ma stałej wartości, lecz jest funkcją zmiennej s Transmitancja obiektu dynamicznego – na przykładzie obiektu rzędu pierwszego, np. czwórnika RC, dwójnika RL (i) G(s) – wzmocnienie dynamiczne obiektu w dziedzinie s Właściwości: (iii) G(s) – nie zależy od sygnału wejściowego – jest zatem charakterystyką obiektu
26
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania26 Transmitancja obiektu opisuje dynamikę obiektu w dziedzinie zmiennej zespolonej s Odpowiedź impulsowa obiektu opisuje dynamikę obiektu w dziedzinie czasu t Związek pomiędzy nimi? Transformata Laplace’a impulsu jednostkowego:
27
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania27 Transmitancją operatorowa obiektu dynamicznego (liniowego, stacjonarnego) nazywamy transformatę Laplace’a składowej wymuszonej odpowiedzi tego obiektu na wymuszenie impulsem jednostkowym Otrzymaliśmy: Składowa wymuszona odpowiedzi na impuls jednostkowy lub Transmitancja obiektu dynamicznego II definicja transmitancji obiektu dynamicznego
28
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania28 W rozważanym przykładzie – obiekt pierwszego rzędu - odpowiedź dla i intensywności S Dla t 0 = 0 i S = 1: Otrzymamy: (porównać z wynikami z poprzednich slajdów)
29
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania29 Przykład 1 – czwórnik RC
30
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania30 Przykład 2 – dwójnik RL
31
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania31 Odpowiedź wymuszona na sygnał skokowy o amplitudzie dla t 0 =0: Odpowiedź wymuszona w dziedzinie s:
32
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania32 Odpowiedź wymuszona w dziedzinie t: Zastosujemy dla znalezienia L -1 metodę rozkładu na ułamki proste:
33
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania33 Stąd:
34
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania34 Parametry transmitancji obiektu rzędu pierwszego inercyjnego Wielkość nazywamy statycznym współczynnikiem wzmocnienia dla rozważanego przykładu
35
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania35 Przykład 1 – czwórnik RC Przykład 2 – dwójnik RL
36
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania36 Określanie wzmocnienia statycznego – wykorzystanie transmitancji - wzmocnienie statyczne
37
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania37 Określanie wzmocnienia statycznego – wykorzystanie transmitancji - wzmocnienie statyczne
38
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania38 oraz Przykład 3 Wyznaczyć wzmocnienie statyczne obiektu o transmitancji W dziedzinie czasu opis równaniem różniczkowym:
39
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania39 W dziedzinie czasu należałoby teraz rozwiązać równanie różniczkowe dla wymuszenia Mając y(t) należałoby obliczyć i ostatecznie wyznaczyć K Korzystając z transmitancji: Dla np. A = 3 odpowiedź ustalona:
40
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania40 W dziedzinie czasu należałoby teraz rozwiązać równanie różniczkowe dla wymuszenia Mając y(t) należałoby obliczyć i ostatecznie wyznaczyć K Korzystając z transmitancji: Dla np. A = 3 odpowiedź ustalona:
41
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania41 Przedstawmy odpowiedź wymuszoną: Policzmy: Wielkość dla rozważanego przykładu - nazywamy stałą czasową bezwładności (inercji)
42
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania42 Podsumowanie: W automatyce wyróżniamy pewne tzw. człony elementarne liniowe i stacjonarne, stanowiące części obiektu sterowanego lub układu sterującego charakteryzujące się określoną transmitancją operatorową Poznaliśmy już jeden z takich członów: Przykład 1 – czwórnik RC Przykład 2 – dwójnik RL
43
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania43 Standardowa postać transmitancji tych układów: Parametry: - współczynnik wzmocnienia statycznego - stała czasowa bezwładności Nazwa członu: Człon inercyjny pierwszego rzędu Inne człony poznamy w dalszej części wykładu i podczas ćwiczeń !
44
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania44 Równanie poddajemy obustronnie transformacji Laplace’a: Wprowadzamy zmienną pomocniczą spełniającą równanie: Wówczas: Zamiast pierwotnego równania modelujemy dwa równania: Wróćmy do tematu schematów analogowych
45
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania45 Zróżniczkujemy równanie wyjścia: W dziedzinie czasu dwa modelowane równania: - równanie zmiennej pomocniczej - równanie wyjścia Dla t=0 otrzymamy:
46
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania46 - równanie zmiennej pomocniczej - równanie wyjścia
47
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania47 Przykład modelu silnika prądu stałego obcowzbudnego Spróbujemy najpierw zbudować schemat blokowy dla modelu nieliniowego stacjonarnego rozważanego silnika Poszukujemy zachowania się rozważanego systemu w przedziale czasu [0,t), dla warunków początkowych
48
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania48 Weźmy pierwsze równanie Transformacja sygnałów w części mechanicznej systemu
49
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania49 Podstawowy element: całkowanie funkcji w przedziale [0,t] z warunkiem początkowym Transformację sygnałów w części mechanicznej możemy przedstawić:
50
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania50 - -
51
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania51 Weźmy drugie równanie - Transformacja sygnałów w części elektrycznej – obwód wzbudzenia systemu
52
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania52 Weźmy trzecie równanie Transformacja sygnałów w części elektrycznej – obwód twornika systemu
53
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania53 - -
54
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania54 - - - - - Zestawimy schemat całego modelu
55
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania55 Silnik – obiekt/system sterowany Cel sterowania – np. utrzymanie określonej prędkości kątowej silnika, określonej wcześniej: stałej – sterowanie stałowartościowe, zmiennej w czasie – sterowanie programowe, nie znanej wcześniej, podawanej na bieżąco – sterowanie nadążne Przyjmijmy: wielkość sterowana – prędkość kątowa silnika Wielkość sterowana – należy do jednej z klas wielkości wyjściowych obiektu sterowanego Pozostałe obserwowane wielkości wyjściowe – wielkości pomocnicze Zatem: wielkości pomocnicze – prąd wzbudzenia, prąd twornika Wielkości wyjściowe obiektu
56
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania56 Poszukiwanie wielkości sterującej; jakie wielkości wejściowe wpływają na prędkość kątową silnika Moment oporowy zewnętrzny – wielkość zakłócająca Napięcie twornika, napięcie wzbudzenia? – kandydaci na wielkość sterującą Silnik – obiekt/system sterowany – c.d. Wielkości wejściowe obiektu
57
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania57 Graficzna reprezentacja systemów dynamicznych – schematy blokowe Poglądowym narzędziem przedstawiania systemów dynamicznych są schematy blokowe – dotyczy to szczególnie systemów stacjonarnych, zarówno liniowych jak i nieliniowych Budowa schematu blokowego korzysta z kilku symboli podstawowych, a zbudowany schemat może być narzędziem pomocniczym w analizie systemu Schemat blokowy obrazuje przepływ i transformacje informacji/sygnałów w systemie
58
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania58 Graficzna reprezentacja systemów dynamicznych – schematy blokowe Symbole podstawowe: Element systemu: przetwarzanie informacji wejściowej w informację wyjściową Droga przesyłania informacji Węzeł zaczepowy: rozsyłanie tej samej informacji do różnych elementów systemu lub do otoczenia Opis sposobu przetwarzania
59
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania59 Węzeł sumacyjny: sumowanie algebraiczne sygnałów dochodzących z różnych elementów systemu lub z otoczenia - Węzeł mnożący: mnożenie algebraiczne sygnałów dochodzących z różnych elementów systemu lub z otoczenia -
60
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania60 Technologię budowania schematu blokowego pokażemy na kilku przykładach Opis sposobu przetwarzania Opis sposobu przetwarzania użyty w symbolu elementu systemu może mieć różny charakter charakterystyka statyczna – dla elementu statycznego nieliniowego transmitancja operatorowa lub widmowa – dla elementu dynamicznego liniowego stacjonarnego szkicowa charakterystyka skokowa lub impulsowa – dla elementu dynamicznego liniowego stacjonarnego szkicowa charakterystyka częstotli - wościowa – dla elementu dynamicznego liniowego stacjonarnego
61
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania61 Zadania – budowanie schematu blokowego w oparciu o zależności opisu systemu sterowania Zadanie 1: Działanie systemu sterowania opisane jest następującymi zależnościami: Narysuj schemat blokowy tego układu sterowania
62
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania62 Rozwiązanie -
63
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania63 -
64
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania64 - -
65
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania65 Zadanie: Utrzymać napięcie zasilania odbiorników w sieci prądu stałego na stałym, zadanym poziomie U o =24V Zaproponowane rozwiązanie Obiekt sterowany Układ sterujący ωmωm Wielkości zakłócające Wielkość sterująca IwIw ΦwΦw UoUo ΦkΦk - IoIo RzRz E - IkIk K5K5 UεUε Wielkość sterowana
66
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania66 Zależności
67
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania67 System sterowany System sterujący Dostępna wiedza o obiekcie sterowanym Wielkość sterowana Wielkości zakłócające Wartość pożądana wielkości sterowanej Układ zamknięty sterowania (ze sprzężeniem zwrotnym) Wielkość sterująca W przykładzieW przykładzie: W przykładzie
68
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania68 Przykład – sterowanie napięciem zasilania –schemat blokowy - Opis działania: Schemat blokowy: Symbole z falką - zmienne
69
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania69 +
70
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania70 Schemat blokowy systemu sterowanego - prądnicy - +
71
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania71 Opis działania systemu sterowanego - prądnicy Podstawiając kolejno (2) – (5) do (1) otrzymamy opis zależności wejście – wyjście prądnicy (1) (2) (3) (4) (5) Opis działania prądnicy nieliniowy (6)
72
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania72 Jeżeli stałe, czyli - +
73
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania73 (1) (2a) (3) (4) (5) Opis działania liniowy (6a)
74
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania74 Schemat blokowy systemu sterowania - + - +
75
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania75 Schemat blokowy systemu sterowania - + - +
76
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania76 Opis działania Podstawiając kolejno (7) – (8) do (6) otrzymamy opis zależności wejście – wyjście systemu sterowania (6) (7) (8) (9)
77
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania77 Schemat blokowy systemu sterowania - + - +
78
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania78 - + - + Schemat blokowy systemu sterowania
79
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania79 Opis działania Podstawiając kolejno (7) – (8) do (6a) otrzymamy opis zależności wejście – wyjście systemu sterowania (9a) (7) (8) (6a)
80
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania80 Rozważymy teraz model zlinearyzowany silnika PS i wybierzemy opis za pomocą transmitancji operatorowej – zbudujemy schemat blokowy transmitancyjny
81
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania81 Niech Poddamy transformacji Laplace’a każde z równań, przy zerowych warunkach początkowych Linearyzacja w otoczeniu punktu równowagi gwarantuje zerowe warunki początkowe Warto pamiętać, że Powracamy do przykładu z silnikiem PS
82
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania82 Weźmy pierwsze równanie i poddajmy je transformacji Laplace’a Otrzymamy
83
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania83 -
84
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania84 Weźmy drugie równanie i poddajmy je transformacji Laplace’a Otrzymamy
85
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania85
86
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania86 Weźmy w końcu trzecie równanie modelu i poddajmy je transformacji Laplace’a Otrzymamy
87
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania87 - -
88
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania88 - - - Zestawimy schemat całego modelu
89
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania89 Model obiektu/systemu typu wejście-wyjście wyrażony za pomocą transmitancji operatorowych można oczywiście stosować dla obiektów/systemów wielowymiarowych Zastosujemy tą formę reprezentacji modelu systemu do rozważanego systemy - modelu procesów elektromechanicznych silnika obcowzbudnego prądu stałego Niech wektory transformat wielkości wejściowych i wyjściowych
90
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania90 Dla systemu wielowymiarowego liniowego i stacjonarnego wprowadza się macierz transmitancji operatorowych Model obiektu/systemu typu wejście-wyjście wyrażony za pomocą transmitancji operatorowych ma wówczas postać
91
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania91 Dla rozważanego modelu silnika, możemy zapisać gdzie
92
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania92 Nietrudno, w oparciu o schemat blokowy stwierdzić Poszczególne elementy macierzy określa się korzystając z liniowości systemu (spełnianie zasady superpozycji) gdzie
93
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania93 Jeżeli wybrać za wielkość sterującą napięcie twornika u t (t), to najbardziej interesującymi transmitancjami będą transmitancje w torach Ustalmy określające je wyrażenia
94
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania94 - Odpowiedni fragment schematu blokowego dla toru: prędkość kątowa – napięcie twornika Struktura: pętla ujemnego sprzężenia zwrotnego
95
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania95 Tor główny Tor sprzężenia zwrotnego -
96
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania96 Otrzymamy Tor: prędkość kątowa – napięcie twornika ma cechy układu drugiego rzędu
97
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania97 Odpowiedni fragment schematu blokowego dla toru: prędkość kątowa – moment obciążenia zewnętrznego - - Struktura: pętla ujemnego sprzężenia zwrotnego
98
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania98 Tor główny Tor sprzężenia zwrotnego - -
99
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania99 Otrzymamy Tor: prędkość kątowa – moment oporowy zewnętrzny ma cechy układu drugiego rzędu z takim samym równaniem charakterystycznym jak tor prędkość kątowa – napięcie twornika
100
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania100 Częściowo wypełniliśmy macierz transmitancji G(s)
101
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania101 Dalej wprowadźmy następujące założenia Przyjmijmy, że napięcie wzbudzenia posiada stałą wartość lub nawet założenie, że załączane jest na stałą wartość na tyle wcześniej przed momentem zmian innych wejść systemu, że ustaną w tej części systemu przebiegi przejściowe. Prowadzi to do: * silnik jest systemem liniowym stacjonarnym, ale * uzyskany przy poprzednich założeniach model transmitancyjny ulega zmianie Powód drugiej zmiany – napięcie u w (t) nie spełnia warunku L1 stosowania przekształcenia Laplace’a
102
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania102 Prześledźmy te zmiany Jeżeli ustalona wartość napięcia wzbudzenia wynosi to oznaczając odpowiadającą tej wartości napięcia wzbudzenia wartość prądu wzbudzenia Otrzymamy model
103
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania103 Dla uproszczenia oznaczmy wówczas
104
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania104 Weźmy pierwsze równanie i poddajmy je transformacji Laplace’a Otrzymamy gdzie
105
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania105 -
106
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania106 Weźmy drugie równanie i poddajmy je transformacji Laplace’a Otrzymamy gdzie
107
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania107 -
108
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania108 - - Zestawimy schemat całego modelu
109
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania109 Nietrudno spostrzec, że mimo zmian modelu transmitancyjnego systemu, struktura transmitancji w torach : prędkość kątowa – napięcie twornika oraz prędkość kątowa – moment oporowy zewnętrzny pozostają niezmienione (ćwiczenie własne – pokazać to) Inne ćwiczenie: Dla schematu z poprzedniego slajdu policzyć całą macierz transmitancji gdzie
110
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania110 Jeżeli nie interesować się przebiegami prądu twornika, uzyskamy prosty model liniowy stacjonarny silnika jako obiektu sterowanego prędkości kątowej z jednym wejściem sterującym, jednym wejściem zakłócającym i jednym wyjściem Wprowadzimy jeszcze jedno uproszczenie
111
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania111 Lub bardziej szczegółowo - - gdzie
112
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania112 Dziękuję – koniec materiału prezentowanego podczas wykładu
Podobne prezentacje
© 2024 SlidePlayer.pl Inc.
All rights reserved.