Pobierz prezentację
Pobieranie prezentacji. Proszę czekać
OpublikowałJudyta Czyż Został zmieniony 6 lat temu
1
Podstawowe pojęcia Data Mining, przebieg procesu, zastosowania
Eksploracja Danych Eksploracja danych (1) Podstawowe pojęcia Data Mining, przebieg procesu, zastosowania Krzysztof Regulski, WIMiIP, KISiM, B5, pok. 408
2
Plan wykładów Wprowadzenie do Eksploracji Danych
Repetytorium z probabilistyki i statystyki Przygotowanie i wstępna obróbka danych Dobór, eliminacja i redukcja liczby zmiennych Klasyfikacja. Regresja. Grupowanie. Odkrywanie asocjacji. Odkrywanie wzorców sekwencji. Analiza szeregów czasowych. Analiza przeżycia. Eksploracja tekstu. Eksploracja sieci Web. KISIM, WIMiIP, AGH
3
Literatura Uczelnia on-line ( Projekt sfinansowano ze środków Europejskiego Funduszu Społecznego z programu Sektorowy Program Operacyjny Rozwój Zasobów Ludzkich StatSoft: Metody statystyki i data mining w badaniach naukowych, Statystyka i data mining w praktyce, Nowoczesne narzędzia gromadzenia, udostępniania i analizy danych: STATISTICA Data Miner i Sybase IQ Morzy T., Eksploracja Danych. Metody i algorytmy, WN-PWN, Warszawa 2013 Larose D.T., Metody i modele eksploracji danych, WN-PWN, W-wa, 2008 Data Mining: Concepts and Techniques, J. Han, M. Kamber, Morgan Kaufman, 2000 Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations, I. H. Witten, E. Frank, Morgan Kaufman, 2000 Klosgen W., Żytkow J.M., Handbook of Data Mining and Knowledge discovery, Oxford University Press, 2002 J. Hand, H. Mannila, P. Smyth, Eksploracja danych, WNT, Warszawa 2001 P. Cichosz, Systemy uczące się, WNT, 2000 T. Morzy, Odkrywanie asocjacji: Algorytmy i struktury danych, OWN, 2004 KISIM, WIMiIP, AGH
4
Zasady zaliczenia Laboratorium
opracowanie danych (dobór zmiennych, selekcja, próba losowa, etc.) opracowanie modelu drzewa decyzyjnego opracowanie modelu grupowania (klasteryzacja) przygotowanie sprawozdania sprawozdanie oddane po terminie: stopień w dół każde zajęcia są oceniane KOLOKWIUM z wykładu (*) (*) obecność na wykładach oraz wysokie oceny z laboratoriów i projektu mogą zapewnić zwolnienie z kolokwium z wykładów KISIM, WIMiIP, AGH
5
Zasady zaliczenia Projekt zajęcia są punktowane
ustalenie zbioru danych / źródeł np.: (własne, oryginalne dane + pkt) postawienie problemu badawczego opracowanie danych (dobór zmiennych, selekcja etc) wybór algorytmów, narzędzi programistycznych (np. STATISTICA) (porównanie dwóch algorytmów/programów +pkt); - realizacja drzew decyzyjnych; - analiza skupień; - opracowanie wybranego przez siebie algorytmu data mining; opracowanie sprawozdania przygotowanie prezentacji na 5,0 (bdb) projekt oddany po terminie: stopień w dół prezentacja nie wygłoszona: kolejny stopień w dół KISIM, WIMiIP, AGH
6
Zasady zaliczenia Ocena końcowa
(z syllabusa) Ocena końcowa (OK) to średnia ważona: Ocena z ćwiczeń laboratoryjnych (OL) + ocena projektu (OP) + ocena z kolokwium z wykładu (OW) (*) OK = 0,4*OP + 0,3*OL + 0,3*OW(*) Ocenę z projektu może obniżyć niedotrzymanie terminu realizacji (*) obecność na wykładach oraz wysokie oceny z laboratoriów i projektu mogą zapewnić zwolnienie z kolokwium z wykładów z uznaniem oceny z projektu, wtedy OK=0,6*OP+0,4*OL KISIM, WIMiIP, AGH
7
Eksploracja Danych Data Mining
8
Gdzie stosujemy eksplorację danych?
inne ? polityka zarządzanie ekonomia gospodarka produkcja zarządzanie jakością sztuczna inteligencja: rozpoznawanie wzorców, mowy, pisma, semantyka BigData data mining KISIM, WIMiIP, AGH
9
Industry 4.0
10
Big Data big data to zbiory informacji o dużej objętości, dużej zmienności lub dużej różnorodności, które wymagają nowych form przetwarzania w celu wspomagania podejmowania decyzji, odkrywania nowych zjawisk oraz optymalizacji procesów: szukanie, pobieranie, gromadzenie i przetwarzanie model 4V (Volume, Velocity, Variety, Value) : wykorzystanie – wykorzystaj najpierw wewnętrzne (własne) zasoby danych; wnioskowanie – umiejętnie stosuj techniki analityczne, użyj ekspertów; wzbogacanie – wzbogacaj własne dane o informacje z rynku, używaj słowników i baz referencyjnych; weryfikacja – koniecznie weryfikuj hipotezy i wnioski. Big Data as-a-Service (BDaaS), czyli przetwarzanie w chmurze obliczeniowej wielkich zbiorów danych, to dziś najszybciej rozwijająca się gałąź IT Ponad 7 miliardów dolarów – na tyle szacowana jest wartość sektora Big Data as-a-Service (BDaaS) w roku 2020 segment Big Data rozwija się niemal 6-krotnie szybciej niż cały rynek IT
11
Big Data Early detection of defects and production failures, thus enable their prevention, increase productivity, quality, and agility benefits that have significant competitive value. Big Data Analytics consists of 6Cs in the integrated Industry 4.0 and Cyber Physical Systems environment. The 6C system comprises: Connection (sensor and networks) Cloud (computing and data on demand) Cyber (model & memory) Content/context (meaning and correlation) Community (sharing & collaboration) Customization (personalization and value) Data has to be processed with advanced tools (analytics and algorithms) to generate meaningful information. KISIM, WIMiIP, AGH
12
KISIM, WIMiIP, AGH
13
Przechowywanie / Przetwarzanie / Analiza
KISIM, WIMiIP, AGH
14
Bez analizy przechowywanie danych nie ma najmniejszego sensu.
Zalew danych Bez analizy przechowywanie danych nie ma najmniejszego sensu. UC Irvine Machine Learning Repository KISIM, WIMiIP, AGH
15
Czym jest eksploracja danych?
Eksploracja danych: proces automatycznego odkrywania nietrywialnych, dotychczas nieznanych, potencjalnie użytecznych reguł, zależności, wzorców, schematów, podobieństw lub trendów w dużych repozytoriach danych. Celem eksploracji danych jest analiza danych i procesów dla lepszego ich zrozumienia Odkrywane w procesie eksploracji danych wzorce mają najczęściej postać reguł logicznych, klasyfikatorów (np. drzew decyzyjnych), zbiorów skupień, wykresów, równań liniowych, itp. Eksploracja danych to etap odkrywania wiedzy w bazach danych KDD (Knowledge Discovery in Databases). KISIM, WIMiIP, AGH
16
Dane a wiedza Toniemy w danych, a brakuje nam wiedzy jaka jest w tych danych zawarta. „Wiedza jest specyficznym rodzajem zasobów – w przeciwieństwie do wszystkich innych, przybywa jej w miarę używania” G.Probst KISIM, WIMiIP, AGH
17
KOMPONENTY KAPITAŁU INTELEKTUALNEGO
liczbę zleceń na klienta lojalność (czas współpracy z klientem) liczbę utraconych klientów udział w rynku rozpoznawalność marki znaki handlowe inwestycje w marketing kompetencje pracowników rotacja pracowników poziom motywacji odbyte szkolenia wiedza zawarta w dokumentach KAPITAŁ LUDZKI KAPITAŁ KLIENCKI KAPITAŁ PROCESÓW KAPITAŁ INNOWACJI procedury i techniki produkcyjne systemy zarządzania jakością jakość produktów odsetek braków patenty: wartość, stan wykorzystania – korzyści płynące z patentu inwestycje w badania i rozwój odnawialność technologii IT KISIM, WIMiIP, AGH
18
Rodzaj kapitału a funkcja zarządzania
KISIM, WIMiIP, AGH
19
Zarządzanie wiedzą (Knowledge Management)
G.Probst, S.Raub, K. Romhardt Zarządzanie wiedzą (KM) - pełni rolę koordynacyjną w przedsiębiorstwie. Tworzy warunki do tworzenia lub pozyskiwania wiedzy, dzielenia się nią i wykorzystywania zajmuje się wiedzą, czyli kapitałem ludzkim – jest jedną z „funkcji” zarządzania kapitałem intelektualnym. Jego rolą jest zapewnienie sprawnego przepływu informacji i wiedzy pomiędzy wszystkimi częściami organizacji.
20
Zapytania eksploracyjne
Eksploracja danych umożliwia analizę danych dla problemów, które, ze względu na swój rozmiar, są trudne do przeprowadzenia przez użytkownika, oraz tych problemów, dla których nie dysponujemy pełną wiedzą o przedmiocie analizy, co uniemożliwia sterowanie procesem analizy danych. Praktyczne pożytki ekstrahowania danych: prognozowanie (ang. prediction, forecasting), opis (ang. description). KISIM, WIMiIP, AGH
21
Proces odkrywania wiedzy
Hetoregeniczne źródła danych wybór zmiennych przekształcenia interpretacja i ocena odkrytych struktur KISIM, WIMiIP, AGH
22
Dziedziny naukowe eksploracji danych
Eksploracja danych to zadanie interdyscyplinarne: statystyka, technologie bazodanowe, uczenie maszynowe, rozpoznawanie wzorców, sztuczna inteligencja, wizualizacja. “Eksploracja danych polega na torturowaniu danych tak długo, aż zaczną zeznawać” KISIM, WIMiIP, AGH
23
Metody eksploracji danych
klasyfikacja/regresja (classifications) grupowanie/analiza skupień (clustering) odkrywanie sekwencji (sequential patterns) odkrywanie charakterystyk analiza przebiegów czasowych (time-series similarities) odkrywanie asocjacji (associations) wykrywanie zmian i odchyleń (deviation detection) eksploracja WWW eksploracja tekstów KISIM, WIMiIP, AGH
24
Przykładowe algorytmy z zakresu Data Mining
indukcja drzew (CART, CHAID) Grupowanie (k-Średnich; EM) SVM, ANN RoughSets NeuroFuzzy (ANFIS) MARSplines, ANOVA, VEPAC analiza regresji liniowej i nieliniowej, regresja logistyczna, analiza przeżycia modele szeregów czasowych ARIMA analiza ANOVA analiza skupień modele drzew decyzyjnych (klasyfikacyjne/regresyjne, CART) Sztuczne Sieci Neuronowe metody klasyfikacji: najbliższych sąsiadów, naiwny klasyfikator Bayesa algorytmy indukcji reguł analiza asosjacji analiza składowych głównych PCA metoda wektorów nośnych SVM algorytm NIPALS komponenty wariacyjne (VEPAC) Sieci neuronowe data mining Narzędzia: → STATISTICA - StatSoft → IBM- SPSS Statistics → środowisko R → Weka → Oracle Data Mining → Enterprise Miner SAS → Mine Set - Silicon Graphics → Alteryx → RapidMiner → Data Mining Client for Excel → Azure → GNU PSPP - a program for statistical analysis → OpenStat → Statistical Lab KISIM, WIMiIP, AGH
25
Sztuczna Inteligencja ?
26
Inteligencja Czy inteligencja jest jakąś jedną dziedziną, czy też jest to nazwa dla zbioru odrębnych i niepowiązanych zdolności? Co zyskujemy w procesie uczenia się? Co to jest intuicja? Czy inteligencja może być nabyta wskutek nauki lub obserwacji, czy też jest jakoś uwarunkowana wewnętrznie? Jak wiedza wpływa na wzrost inteligencji? Czy inteligencja to szczegółowa wiedza o jakiejś dziedzinie, czy zbiór związanych ze sobą różnych zdolności? KISIM, WIMiIP, AGH
27
w ten sposób sztuczna inteligencja nigdy nie ma żadnych osiągnięć
Inteligencja jest zdolnością do sprawnego rozwiązywania zadań intelektualnych, które zazwyczaj uchodzą za trudne. … są trudne tak długo, jak długo nie są znane algorytmy ich rozwiązywania, potem przestają być traktowane jako zadania sztucznej inteligencji w ten sposób sztuczna inteligencja nigdy nie ma żadnych osiągnięć KISIM, WIMiIP, AGH
28
sztuczna inteligencja - rozwiązywanie „trudnych” zadań
Czy to jest trudny problem ? × A to: ”Kochanie, kup ładny kawałek wołowiny…” KISIM, WIMiIP, AGH
29
Krzysztof Manc (Wynalazca)
Robot kolejkowy EWA-1 -Pan tu nie stał, pan nie jest w ciąży. - Moja konstrukcja jest optymalna, tylko ludzie nie dorośli do tego. Wolą sami stać w kolejkach. Krzysztof Manc (Wynalazca) KISIM, WIMiIP, AGH
30
Zagadnienia Sztucznej Inteligencji (AI)
Soft Computing Optymalizacja badania operacyjne Algorytmy ewolucyjne i genetyczne reprezentacja wiedzy Logika rozmyta Sieci neuronowe wnioskowanie Metody statystyczne Computational Intelligence - numeryczne Artificial Intelligence - symboliczne Systemy ekspertowe Rachunek prawdopodobieństwa Wizualizacja Data mining Uczenie maszynowe Rozpoznawanie Wzorców KISIM, WIMiIP, AGH
31
Przykłady zadań sztucznej inteligencji
dokonywanie ekspertyz ekonomicznych, prawnych, technicznych, medycznych (ocena) wspomaganie podejmowania decyzji (doradzanie) rozpoznawanie obrazów, twarzy, wzorców, etc. optymalizacja (harmonogramowanie, alokacja zasobów, planowanie tras) generacja nowej wiedzy (poszukiwanie zalezności, tendencji, reguł, etc – data mining) prognozowanie zjawisk ekonomicznych, przyrodniczych rozumienie języka naturalnego sterowanie urządzeniami (roboty etc) i inne… KISIM, WIMiIP, AGH
32
Czy nam to szybko grozi? KISIM, WIMiIP, AGH
Podobne prezentacje
© 2024 SlidePlayer.pl Inc.
All rights reserved.