Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Projektowanie wspomagane komputerem

Podobne prezentacje


Prezentacja na temat: "Projektowanie wspomagane komputerem"— Zapis prezentacji:

1 Projektowanie wspomagane komputerem
Wykład 8

2 HSDR – Hypergraph System Supporting Design and Reasoning
Graficzny interfejs użytkownika do edycji diagramów Generator wewnętrznej reprezentacji diagramów Kontroler – moduł zapewniający komunikację i synchronizację pomiędzy interfejsem a generatorem. 4. Moduł wnioskowania na temat diagramów.

3 PROJEKTOWANIE BUDYNKÓW WIELOPIĘTROWYCH

4 BUDYNEK WIELOPIĘTROWY
Projekt budynku wielopiętrowego wspomagany przez systemem komputerowy zawierającym dwa edytory: edytor 2D edytor 3D.

5 PROJEKT – ETAP 1 Rysowanie konturów poszczególnych pięter
Rysowanie ważnych obszarów na każdym piętrze 3. Wprowadzenie relacji pomiędzy piętrami

6 RELACJE PRZESTRZENNE Przykład relacji przyległości
pomiędzy garażem a poddaszem: sufit garażu jest przyległy do podłogi strychu.

7 PROJEKT – ETAP 2 Rozkłady pomieszczeń kolejnych kondygnacji są projektowane.

8 ROZKŁAD POMIESZCZEŃ - PARTER

9 ROZKŁAD POMIESZCZEŃ – I PIĘTRO

10 ROZKŁAD POMIESZCZEŃ – PODDASZE

11 PROJEKT – ETAP 3 Automatyczna transformacja rozkładów pomieszczeń na
atrybutowane hipergrafy hierarchiczne.

12 PARTER

13 ATRYBUTOWANY HIPERGRAF HIERARCHICZNY
Definicja: Niech Σ będzie ustalonym alfabetem etykiet, a Ω jest zbiorem atrybutów. Atrybutowany hipergraf hierarchiczny nad Σ oraz Ω jest systemem H Ω = (E, V, A, t, lb, att, ch), gdzie: E jest niepustym skończonym zbiorem hiperkrawędzi obiektowych, V jest niepustym skończonym zbiorem wierzchołków (fragmenty obiektów), A jest skończonym zbiorem łuków pomiędzy wierzchołkami, t: E A → V * jest odwzorowaniem przypisującym sekwencje różnych wierzchołków do hiperkrawędzi oraz łuków, lb: E  A V → Σ jest funkcją etykietowania elementów hipergrafu, att: E  V → 2Ω jest funkcją atrybutowania, gdzie 2Ω jest zbiorem wszystkich podzbiorów Ω. ch: E → 2EVA jest funkcją zagnieżdżania potomków, taką że żadna hipergrawędź nie może być zagnieżdżona w dwóch różnych hiperkrawędziach oraz hiperkrawędź nie może być swoim własnym potomkiem.

14 HIPERGRAF HIERARCHICZNY DLA PARTERU
ch+(e) oznacza wszystkie elementy hipergrafu będące potomkami e

15 HIPERGRAF DLA STRUKTURY BUDYNKU

16 REPREZENTACJE BUDYNKU

17 WIEDZA PROJEKTOWA I WNIOSKOWANIE
System HSSDR jest wyposażony w translator wiedzy, który tłumaczy wiedzę zapamiętaną w hipergrafie na formuły języka logiki pierwszego rzędu.

18 SEMANTYKA FORMUŁ LOGICZNYCH
struktura relacyjna – podstawa semantyki hipergraf H – struktura relacyjna dla HSSDR obiekty (pomieszczenia, ściany, sufity, podłogi) - hiperkrawędzie składowe oraz wierzchołki funkcje np. definiują atrybuty krawędziom przypisane są symbole predykatów (relacji).

19 PRZYKŁAD FORMUŁY LOGICZNEJ
Formuła sprawdzająca, czy istnieje kuchnia o powierzchni co najmniej 10m2 , oraz zlokalizowana na powierzchni mieszkalnej. Postać formuły: ∀ x, y: lb(y) = LA ∧ x ∊ ch+(y) ∧ lb(x) = K ∧ area(x) ≥ 10, gdzie x, y – zmienne, ch+ jest domknięciem funkcji ch, która wyznacza potomków hiperkrawędzi, area - atrybut wyznaczający powierzchnie pokoi.

20 MODUŁ WNIOSKUJĄCY Hierarchiczna reprezentacja wiedzy projektowej ułatwia proces wnioskowania. ∀ x, y: lb(y) = LA ∧ x ∊ ch+(y) ∧ lb(x) = K ∧ area(x) ≥ 10, Moduł wnioskowania znajduje wartości zmiennej. Hiperkrawędź e1 odpowiada y oraz hiperkrawędź e10 z etykietą K such that e10 ∊ ch2(e1) odpowiada x. Ponieważ atrybut area (powierzchnia) wynosi 12, rozważana formuła jest spełniona.

21 SPRAWDZANIE KRYTERIÓW PROJEKTOWYCH

22 BŁYSKOTLIWE MYŚLENIE ŻART GRAFICZNY

23 Błyskotliwe myślenie wykorzystane jest
ETAP 6 Błyskotliwe myślenie wykorzystane jest do antropomorfizmu projektu. Projektant korzysta z twarzy aby wyrazić różne aspekty projektu: minimalizm, niezwykłość czy żart. Projektanci portretują osobowości używając do tego przedmiotów charakteryzujących ich zawody.

24 Twarz 1

25 TWARZ 2

26 TWARZ 3

27 TWARZ 4


Pobierz ppt "Projektowanie wspomagane komputerem"

Podobne prezentacje


Reklamy Google