SZTUCZNA INTELIGENCJA

Slides:



Advertisements
Podobne prezentacje
Algorytmy genetyczne.
Advertisements

„Wielokryterialna optymalizacja pracy systemu wytwarzania o strukturze przepływowej – algorytm memetyczny” Przygotował: Dominik Żelazny, IIAR.
Analiza współzależności zjawisk
IV Tutorial z Metod Obliczeniowych
Wprowadzenie do optymalizacji wielokryterialnej.
Metody rozwiązywania układów równań liniowych
Algorytmy ewolucyjne Termin EC (Evolutionary Computation) obliczenia ewolucyjne obejmuje wiele technik obliczeniowych kluczowym elementem jest model procesów.
Algorytmy genetyczne Nowak Sławomir
Programowanie genetyczne (Genetic Programming)
BUDOWA MODELU EKONOMETRYCZNEGO
Badania operacyjne. Wykład 1
Badania operacyjne. Wykład 2
Metoda węzłowa w SPICE.
Sztuczne sieci neuronowe
Zrównoleglanie programu sekwencyjnego
Materiały pochodzą z Platformy Edukacyjnej Portalu
Algorytmy genetyczne Motto:
Hybrydowe metody optymalizacji geometrii. Prezentacja wyników.
Analiza współzależności
Analiza współzależności
Zmienność organizmów i jej przyczyny
Statystyka w doświadczalnictwie
Nieelitystyczne algorytmy ewolucyjnej optymalizacji wielokryterialnej
Metody Sztucznej Inteligencji w Sterowaniu 2009/2010Optymalizacja miary efektywności działania sztucznych sieci neuronowych Dr hab. inż. Kazimierz Duzinkiewicz,
Opracował: dr inż. Michał Krzemiński
Algorytmy genetyczne - plan wykładu
Algorytmy genetyczne - plan wykładu
Algorytmy genetyczne - plan wykładu
Algorytmy immunologiczne
Hipoteza cegiełek, k-ramienny bandyta, minimalny problem zwodniczy
Systemy Wspomagania Decyzji
Algorytmy Genetyczne Wprowadzenie.
Algorytm genetyczny.
Algorytmy memetyczne i ich zastosowania
Elementy Rachunku Prawdopodobieństwa i Statystyki
Zadanie programowania liniowego PL dla ograniczeń mniejszościowych
Zadanie programowania liniowego PL dla ograniczeń mniejszościowych
Zakładamy a priori istnienie rozwiązania α układu równań.
Systemy wspomagania decyzji
Modelowanie i identyfikacja 2010/2011Optymalizacja miary efektywności działania sztucznych sieci neuronowych Dr hab. inż. Kazimierz Duzinkiewicz, Katedra.
Model I/O bazujący na HSWN Problem uczenia sieci HSWN
Dziedziczenie cech jednogenowych.
SYSTEMY EKSPERTOWE I SZTUCZNA INTELIGENCJA
SYSTEMY EKSPERTOWE I SZTUCZNA INTELIGENCJA
Do technik tych zalicza się: * sztuczne sieci neuronowe
Regresja wieloraka.
Seminarium licencjackie Beata Kapuścińska
Wyszukiwanie maksimum funkcji za pomocą mrówki Pachycondyla Apicalis.
Wnioskowanie statystyczne
Algorytmy Genetyczne Anna Tomkowska Politechnika Koszalińska
Warstwowe sieci jednokierunkowe – perceptrony wielowarstwowe
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA
BAZY DANYCH Microsoft Access Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i.
SZTUCZNA INTELIGENCJA
BAZY DANYCH Microsoft Access Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i.
SZTUCZNA INTELIGENCJA
Metody Inteligencji Obliczeniowej
BAZY DANYCH Microsoft Access Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i.
Statystyczna analiza danych
GeneracjeTechnologia Architektura przetwarzania 0. Przekaźniki elektromechaniczne 1. Lampy elektronowe 2. Tranzystory 3. Układy scalone 3.5.Układy dużej.
Metody Inteligencji Obliczeniowej Adrian Horzyk Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii.
STATYSTYKA – kurs podstawowy wykład 11
1.problem próbkowania (sampling problem) dobór charakterystycznych punktów powierzchni w celu uzyskania najlepszego efektu przy minimalizacji ilości danych.
Metody optymalizacji Materiał wykładowy /2017
Sztuczne Sieci Neuronowe
Jednorównaniowy model regresji liniowej
Analiza współzależności zjawisk
Zapis prezentacji:

SZTUCZNA INTELIGENCJA ALGORYTMY GENETYCZNE I EWOLUCYJNE Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej Laboratorium Biocybernetyki 30-059 Kraków, al. Mickiewicza 30, paw. C3/205 horzyk@agh.edu.pl, Google: Adrian Horzyk Adrian Horzyk

ALGORYTMY EWOLUCYJNE Evolutionary Algorithms (EA) Odzwierciedlają naturalne procesy ewolucyjne w przyrodzie. Posiadają zdefiniowane środowisko na podstawie rozwiązywanego problemu, w którym ewoluują rozwiązania reprezentowane przez osobniki o różnym przystosowaniu do tego środowiska. Dostosowanie osobników mierzymy przy pomocy funkcji przystosowania (fitness function) i na podstawie stopnia tego przystosowania określamy ich szansę na współudział w generowaniu nowych rozwiązań. Zgodnie z zasadami ewolucji największą szansę na przetrwanie i wpływ na reprodukcję w danym środowisku mają osobniki najlepiej przystosowane i to one generują nowe potencjalnie lepsze rozwiązania.

ALGORYTMY EWOLUCYJNE Evolutionary Algorithms (EA) Algorytmy ewolucyjne są procedurami heurystycznego przeszukiwania opartymi na mechanizmach doboru naturalnego i dziedziczenia, wykorzystując zasadę przeżycia osobników najlepiej przystosowanych. Od klasycznych metod optymalizacyjnych odróżnia je kilka istotnych cech: Nie przetwarzają bezpośrednio parametrów zadania, lecz ich zakodowaną postać. Nie wychodzą z pojedynczego punktu, lecz wykorzystują pewną ich populację (zwykle liczną). Nie korzytają z pochodnych ani innych informacji pomocniczych, lecz z funkcji celu/przystosowania. Nie stosują reguł deterministycznych, lecz probabilistyczne. Te cechy EA dają im odporność i przewagę nad innymi metodami poszukiwania.

ALGORYTMY EWOLUCYJNE I GENETYCZNE W OPTYMALIZACJI I WYSZUKIWANIU Dążąc do znalezienia rozwiązań optymalnych dla postawionych problemów można wykorzystać: Metody analityczne – działają lokalnie i są oparte o optymalizację gradientową: Pośrednie – poszukują lokalnych ekstremów funkcji rozwiązując układ równań (zwykle nieliniowych), otrzymany na skutek przyrównania gradientu funkcji celu do zera. Bezpośrednie – poszukują lokalnego optimum przez „skakanie” po wykresie funkcji w kierunku spadku gradientu. Metody przeglądowe – przeszukują przestrzeń rozwiązań po kolei, lecz w związku z tym, iż taka przestrzeń może być bardzo duża lub nieskończona, metoda jest raczej rzadko stosowana, gdyż jest nieefektywna lub niewykonalna w sensownym czasie. Metody losowe – przeszukują przestrzeń rozwiązań losowo i zapamiętują najlepsze rozwiązanie, lecz w dużej przestrzeni rzadko są w stanie „trafić” w rozwiązanie optymalne, mogą natomiast wspierać poszukiwanie takiego rozwiązania. Algorytmy ewolucyjne są rodzajem metod losowych wykorzystujących wiedzę o wcześniejszych wynikach poszukiwań o określonej jakości do wyznaczania potencjalnych nowych miejsc, w których mogą być rozwiązania lepszej jakości.

ALGORYTMY GENETYCZNE Genetic Algorithms (GA) To rodzaj losowego przeszukiwania heurystycznego przestrzeni rozwiązań występujące w przyrodzie, które naśladuje naturalne procesy dziedziczenia, selekcji, mutacji, i krzyżowania, dokonując wyboru możliwie najlepiej dostosowanych jednostek powstałych w wyniku tych procesów, które będą podstawą kolejnej generacji. Są wykorzystywane do różnych zadań optymalizacyjnych, gdy model dla określonego zadania nie jest znany lub potrzebne jest znalezienie możliwie optymalnych parametrów dla określonego modelu. Często służy do określenia sub-optymalnych parametrów innych modeli stosowanych w inteligencji obliczeniowej. Kodowanie osobników (chromosomów) przy pomocy ciągów zer i jedynek. GA należą do szerszej klasy algorytmów ewolucyjnych (evolutionary algorithms – EA).

KODOWANIE I NAZEWNICTWO Wykorzystywane jest słownictwo zapożyczone z genetyki: Populacja – to zbiór osobników o określonej liczebności. Osobnik / Organizm – to zakodowany zbiór parametrów zadania określający potencjalne rozwiązanie. Chromosom – to łańcuch (ciąg) kodowy uporządkowanych genów. Gen – to cecha, znak lub detektor stanowiący elementarny element chromosomu. Genotyp – to zespół (struktura) chromosomów danego osobnika. Fenotyp – to zestaw wartości odpowiadających danemu genotypowi, czylko zdekodowana struktura będąca zbiorem parametrów zadania, a więc jego rozwiązaniem o określonej jakości. Allel – to wartość danego genu, określana jakok wartość cechy lub jej wariant. Locus – to pozycja wskazująca miejsce położenia danego genu w łańcuchu, czyli w chromosomie.

ALGORYTMY GENETYCZNE genetic algorithms (GA) Klasyczny algorytm genetyczny składa się z następujących kroków: Inicjacja – wybór lub wylosowanie początkowej populacji chromosomów (osobników) reprezentowanych przez ciągi binarne o określonej długości. Ocena przystosowania chromosomów w populacji obliczonego na podstawie funkcji przystosowania (fitness function). Sprawdzenie warunku zatrzymania na podstawie jakości przystosowania najlepszego chromosomu (osobnika) w populacji lub w przypadku braku generowania lepiej przystosowanych chromosomów w kolejnych generacjach. Selekcja chromosomów w zależności od ich przystosowania się, dając największe szanse na wylosowanie tym osobnikom, które są najlepiej przystosowane (np. metoda koła ruletki – roulette-wheel selection – przydziela osobnikom taką część koła, jaka wynika z ich jakości przystosowania się, tzn. ich prawdopodobieństwo LaPlace’a wyboru określone jest jako stosunek jakości przystosowania daneo osobnika do sumy jakości przystosowań wszystkich osobników). Zastosowanie operatorów genetycznych (krzyżowania i mutacji). Utworzenie nowej populacji chromosomów (potomnej) Przejście do punktu 2.

ALGORYTMY GENETYCZNE genetic algorithms (GA) Algorytmy genetyczne składają się z czterech podstawowych operacji: Selekcji – jednostek populacji, które spełniają dopasowanie wyznaczone przez funkcję dopasowania (celu). Reprodukcji – umożliwia powielenie jednostek populacji (ciągów) w stosunku zależnym od wyznaczonej dla nich wartości funkcji dopasowania; w taki sposób powstaje pula rodzicielska. Krzyżowania - to losowe dobranie jednostek populacji (ciągów) z puli rodzicielskiej w pary, a następnie ich krzyżowanie polegające na wymianie części informacji zawartej w ciągach rodzicielskich i utworzeniu potomstwa będącego kombinacją ciągów rodzicielskich. Mutacji – w trakcie której dochodzi do losowej zmiany wartości elementu ciągu kodowego (kodu jednostki).

ALGORYTMY GENETYCZNE Operatory genetyczne Operatory genetyczne mają za zadanie wygenerować nową populację chromosomów (osobniki potomne) na podstawie istniejącej populacji chromosomów w celu poprawy ich jakości przystosowania. W algorytmach genetycznych stosujemy dwa rodzaje operatorów: Operator kryżowania (crossover) – to podstawowy operator stosowany z prawdopodobieństwem 0,5 ≤ pk ≤ 1, a jego działanie polega na rozcięciu łańcuchów chromosomów w wylosowanym miejscu krzyżowania (locus), a następnie zamianę tych łańcuchów pomiędzy tymi łańcuchami. Operator mutacji (mutation) – stosowany jest zwykle z niewielkim prawdopodobieństwem 0 ≤ pm ≤ 0,1, a jego działanie sprowadza się do losowej zamiany wartości genu na przeciwny w łańcuchu.

ALGORYTMY GENETYCZNE krzyżowanie i mutacja PRZYKŁAD: W chromosomach przodków (rodziców) losowany jest punkt krzyżowania (locus), następnie operacja genetycznego krzyżowania, a na końcu mutacja w genach potomków (dzieci).

STRATEGIE i ALGORYTMY EWOLUCYJNE x ALGORYTMY Istnieje kilka zasadniczych różnic pomiędzy algorytmami ewolucyjnymi (EA) i genetycznymi (GA): EA operuje na wektorach liczb zmiennoprzecinkowych, a GA działa na wektorach liczb binarnych. W EA liczność generacji potomnej różni się od liczności generacji rodzicielskiej, zaś w GA liczności te są równe. W EA osobniki wybierane są bez powtórzeń, zaś w GA osobniki zwykle powtarzają się w zależności od ich przystosowania. Selekcja osobników w EA jest deterministyczna, zaś w GA losowa. W EA najpierw wykonuje się proces rekombinacji i/lub mutacji, a następnie proces selekcji (a więc potomek jest wybierany spośród rezultatów krzyżowania dwóch rodziców i/lub mutacji na podstawie funkcji dopasowania), zaś w GA najpierw odbywa się selekcja osobników, na których wykonywane są następnie operacje genetyczne krzyżowania i mutacji zgodnie z ustalonym prawdopodobieństwem. W EA parametry rekombinacji i mutacji zmieniają się w trakcie procesu adaptacji, zaś w GA prawdopodobieństwo krzyżowania i mutacji jest stałe w czasie całego procesu ewolucji.

STRATEGIA EWOLUCYJNA (1 + 1) W strategii ewolucyjnej 1+1 przetwarzany jest tylko jeden chromosom bazowy x: Najpierw losowo ustalany jest początkowy wektor bazowy x. Następnie dokonywana jest mutacja wektora x i powstaje wektor y poprzez dodanie do każdego z genów chromosomu x pewnej liczby losowej generowanej zgodnie z rozkładem normalnym, tzn.: yi = xi +  Ni (0,1) gdzie xi to i-ty gen chromosomu x, a  określa zasięg mutacji, zaś Ni (0,1) liczbę losową generowaną zgodnie z rozkładem normalnym dla i-tego genu. Zasięg mutacji  zmienia się w trakcie działania algorytmu: Jeśli w kolejnych k generacjach stosunek lepszych chromosomów do wszystkich mutacji przewyższa 1/5, wówczas zwiększana jest wartość parametru np. ’ =  * 1,2, zaś w sytuacji, gdy ten stosunek jest mniejszy niż 1/5, zmniejsza się wartość parametru np. ’ =  * 0,82. Porównywane są wartości funkcji przystosowania obu chromosomów F(x) i F(y) i wybierany jest ten, który charakteryzuje się większą wartością tej funkcji. Lepiej przystosowany staje się nowym chromosomem bazowym x. Następnie sprawdzana jest jakość przystosowania osobnika x i jeśli jest ona nie wystarczająca, przechodzimy do kroku 2, za wyjątkiem sytuacji, gdy kolejne ewaluacje nie prowadzą do poprawy wyników działania, tzn. chromosomów lepiej przystosowanych.

STRATEGIA EWOLUCYJNA ( + ) Strategia ewolucyjna ( + ) korzysta z  osobników populacji rodzicielskiej, która poprzez losową reprodukcję tworzy tymczasową populację  osobników ( ≥ ), które podlegają operacjom krzyżowania i mutacji, tworząc populację potomną o liczności . Na końcu dokonywany jest wybór  najlepszych osobników z populacji rodzicielskiej i potomnej. W tej metodzie do każdego chromosomu x dodano , zawierający wartości odchyleń standardowych wykorzystywanych podczas mutacji poszczególnych genów chromosomu x. Operator krzyżowania dotyczy zarówno wektora zmiennych niezależnych x, jak również wektora odchyleń standardowych . W trakcie krzyżowania losowane są dwa osobniki, pomiędzy którymi dochodzi do wymiany bądź uśrednienia wartości ich genów. Tak powstałe osobniki zastępują swoich rodziców.

STRATEGIA EWOLUCYJNA ( , ) Strategia ewolucyjna ( , ) stosowana jest częściej niż ( + ), gdyż umożliwia oderwanie się od dominujących osobników o dobrym dopasowaniu, lecz mogących reprezentować minima lokalne. Różnica polega na tym, iż populację potomną zawierającą  osobników wybiera się tylko spośród najlepszych  osobników, gdzie  > . Osobniki z populacji rodzicielskiej nie mają bezpośredni wpływ na nową pulę osobników potomnych. Funkcja Ackleya

ALGORYTMY EWOLUCYJNE NACISK SELEKTYWNY, EKSPLORACJA I EKSPLOATACJA Naciskiem selektywnym nazywamy zdolność algorytmu ewolucyjnego do poprawiania średniej wartości przystosowania populacji. Mówimy, że algorytm ewolucyjny charakteryzuje się dużym naciskiem selektywnym, gdy większa jest wartość oczekiwana liczby kopii lepszego osobnika niż wartość oczekiwana liczby kopii gorszego osobnika. Nacisk selektywny jest ściśle powiązany z zależnością pomiędzy eksploracją a eksploatacją przestrzeni poszukiwań. EA dokonuje eksploracji, czyli globalnego przeszukiwania całej przestrzeni rozwiązań, w celu przybliżenia się do globalnego minimum lub maksimum będącego rozwiązaniem problemu. EA dokonuje eksploatacji, czyli lokalnego poruszania się po fragmencie przestrzeni w pobliżu globalnego minimum lub maksimum, w celu jego dokładnego zlokalizowania i znalezienia rozwiązania problemu.

ALGORYTMY EWOLUCYJNE NACISK SELEKTYWNY, EKSPLORACJA I EKSPLOATACJA Eksplorację przestrzeni rozwiązań uzyskujemy poprzez zmniejszenie nacisku selektywnego, gdyż wtedy wybierane są również osobniki nie tak dobrze przystosowane, co pozwala zachować pewną różnorodność populacji, a więc zwiększyć szansę na znalezienie optimum globalnego. Eksploatację przestrzeni rozwiązań osiągamy poprzez zwiększenie nacisku selektywnego, gdyż wtedy wybierane są przede wszystkim osobniki najlepiej dostosowane, a więc potencjalnie bliskie rozwiązania optymalnego. Najpierw wobec tego warto wykonać eksplorację przestrzeni rozwiązań, w celu określenia potencjalnych obszarów poszukiwania optimum globalnego, a następnie dla najlepszych uruchomić eksploatację tych podprzestrzeni, w celu odnalezienia tego optimum. Uruchomienie eksploatacji zbyt szybko, może spowodować utknięcie algorytmu ewolucyjnego w lokalnym minimum/maksimum. Nie uruchomienie w odpowiednim czasie eksploatacji może prowadzić do skakania pomiędzy suboptymalnymi punktami, lecz bez możliwości trafienia w rozwiązanie globalnie optymalne.

ALGORYTMY GENETYCZNE METODY SELEKCJI Metoda koła ruletki (roulette-wheel selection) – polega na przydzieleniu każdemu osobnikowi takiego wycinka koła ruletki, jaki odpowiada jakości jego przystosowania. Może to powodować zbyt szybką eksploatację przestrzeni rozwiązań i nie wystarczającą jej eksplorację, a więc utknięcie w minimum/maksimum lokalnym. Można wykorzystać do minimalizacji albo maksymalizacji. Selekcja rankingowa/rangowa (ranking selection) – polega na uporządkowaniu osobników populacji według wartości ich przystosowania, nadając każdemu osobnikowi pewną rangę (rank). Liczba kopii każdego osobnika jest następnie ustalana zgodnie ze zdefiniowaną funkcją zależną od rangi osobnika. Można wykorzystać zarówno minimalizacji jak również maksymalizacji. Metoda turniejowa (tournament selection) – dzieli osobniki populacji na podgrupy, a następnie wybiera z każdej z nich osobnika o najlepszym przystosowaniu. Wybór może być deterministyczny (z prawdopodobieństwem = 1) lub stochastyczny/losowy, gdy prawdopodobieństwo wyboru najlepszego jest < 1. Podgrupy mogą być dowolnego rozmiaru (zwykle 2-3 osobnikowe). Metoda nadaje się zarówno do minimalizacji jak również do maksymalizacji. Selekcja stłoczenia (crowding selection) – dokonuje zastępowania najbardziej podobnych rodziców dziećmi niezależnie od ich funkcji przystosowania, co umożliwia zachowania różnorodności i zmienności populacji. Strategia elitarna (elitist strategy) – polega na ochronie najlepszych chromosomów w kolejnych generacjach, zabezpieczając algorytm przed utratą osobnika/ów o najlepszym przystosowaniu.

ALGORYTMY GENETYCZNE RODZAJE KRZYŻOWAŃ Krzyżowanie jednopunktowe (crossover) losuje jeden punkt krzyżowania (locus). Krzyżowanie dwupunktowe (two-point crossover) losuje dwa punkty krzyżowania. Krzyżowanie wielopunktowe (multiple-point crossover) losuje większą ilość punktów krzyżowania. Krzyżowanie równomierne/jednolite/jednostajne (uniform crossover) wykorzystuje wylosowany wzorzec wskazujący geny dziedziczone od pierwszego z rodziców, a pozostałe pochodzą od drugiego z nich.

ALGORYTMY GENETYCZNE I EWOLUCYJNE RODZAJE MUTACJI I INWERSJA Operacja mutacji binarnej dokonuje zmiany na wartość przeciwną (0 ↔ 1) w tych genach, gdzie wylosowana wartość jest mniejsza od przyjętego prawdopodobieństwa mutacji pm. Operacja mutacji zmiennoprzecinkowej nie mogąc przeprowadzić prostej negacji do wylosowany gen otrzymuje nową wylosowaną liczbę z zakresu [0,1] przemnożoną przez zakres określonego zakresu zmienności genu i odpowiednio przeskalowaną: yi = ai + (bi – ai) * Ui(0,1) lub częściej stosuje się mutację polegającą na dodaniu do każdego wylosowanego do mutacji genu xi, pewnej zmiennej losowej zi: yi = xi + zi Inwersja to operacja zamiany kolejności alleli pomiędzy dwoma losowo wybranymi pozycjami (locus) chromosomu:

ZASTOSOWANIA ALGORYTMÓW GENETYCZNYCH I EWOLUCYJNYCH Stosowane są do dobieranie parametrów metod inteligencji obliczeniowej, np.: Poszukiwania optymalnej architektury sieci neuronowej (kodowanie oparte na połączeniach, węzłach, warstwach lub ścieżkach) Poszukiwania wag sieci neuronowej Równoczesnego określania architektury i wag sieci neuronowej Ewolucji systemów rozmytych (podejście Michigan, Pittsburgh, uczenie iteracyjne) W RapidMinerze posiadamy operatory Optimize Parameters, Selection, Weights (Evolutionary), Logistic Regression (Evolutionary), Support Vector Machine (Evolutionary) i Optimize by Generation (Evolutionary Aggregation) pozwalające wykorzystać rozwiązania ewolucyjne do poszukiwania optymalnych rozwiązań:

AI CZY EWOLUUJE?