Elementy Rachunku Prawdopodobieństwa i Statystyki

Slides:



Advertisements
Podobne prezentacje
Przykład liczbowy Rozpatrzmy dwuwymiarową zmienną losową (X,Y), gdzie X jest liczbą osób w rodzinie, a Y liczbą izb w mieszkaniu. Niech f.r.p. tej zmiennej.
Advertisements

Statystyka w analizie rynku i wycenie nieruchomości (cz.1)
Statystyka Wojciech Jawień
Estymacja. Przedziały ufności.
W dalszej części zajęć wyróżniać będziemy następujące
Równanie różniczkowe zupełne i równania do niego sprowadzalne
Zmienne losowe i ich rozkłady
Zmienne losowe i ich rozkłady
MIĘDZYNARODOWE UNORMOWANIA WYRAŻANIA NIEPEWNOŚCI POMIAROWYCH
Wzory Cramera a Macierze
Skale pomiarowe – BARDZO WAŻNE
Badania operacyjne. Wykład 2
Jak mierzyć asymetrię zjawiska?
Właściwości średniej arytmetycznej
ANALIZA STRUKTURY SZEREGU NA PODSTAWIE MIAR STATYSTYCZNYCH
Krzysztof Jurek Statystyka Spotkanie 4. Miary zmienności m ó wią na ile wyniki są rozproszone na konkretne jednostki, pokazują na ile wyniki odbiegają
Portfel wielu akcji. Model Sharpe’a
Statystyczne parametry akcji
Statystyczne parametry akcji
Instrumenty o charakterze własnościowym Akcje. Literatura Jajuga K., Jajuga T. Inwestycje Jajuga K., Jajuga T. Inwestycje Luenberger D.G. Teoria inwestycji.
Statystyka w doświadczalnictwie
(dla szeregu szczegółowego) Średnia arytmetyczna (dla szeregu szczegółowego) Średnią arytmetyczną nazywamy sumę wartości zmiennej wszystkich jednostek.
Dzisiaj na wykładzie Regresja wieloraka – podstawy i założenia
BIOSTATYSTYKA I METODY DOKUMENTACJI
Analiza korelacji.
Dane informacyjne: Gimnazjum im. Marii Skłodowskiej-Curie
Wykład 5 Przedziały ufności
Metody Symulacyjne w Telekomunikacji (MEST) Wykład 6/7: Analiza statystyczna wyników symulacyjnych  Dr inż. Halina Tarasiuk
Średnie i miary zmienności
Elementy Rachunku Prawdopodobieństwa i Statystyki
Elementy Rachunku Prawdopodobieństwa i Statystyki
Konstrukcja, estymacja parametrów
Elementy Rachunku Prawdopodobieństwa i Statystyki
Elementy Rachunku Prawdopodobieństwa i Statystyki
Metody Lapunowa badania stabilności
Elementy Rachunku Prawdopodobieństwa i Statystyki
Rozkłady wywodzące się z rozkładu normalnego standardowego
Podstawy analizy matematycznej II
Obserwatory zredukowane
Rozważaliśmy w dziedzinie czasu zachowanie się w przedziale czasu od t0 do t obiektu dynamicznego opisywanego równaniem różniczkowym Obiekt u(t) y(t) (1a)
Zadanie programowania liniowego PL dla ograniczeń mniejszościowych
Elementy Rachunku Prawdopodobieństwa i Statystyki
Statystyka – zadania 4 Janusz Górczyński.
Podstawy analizy matematycznej I
II. Matematyczne podstawy MK
Elementy Rachunku Prawdopodobieństwa i Statystyki
Sterowanie – metody alokacji biegunów II
MECHANIKA 2 Wykład Nr 10 MOMENT BEZWŁADNOŚCI.
Zagadnienia AI wykład 2.
Statystyka medyczna Piotr Kozłowski
Wykład 5 Przedziały ufności
Modele zmienności aktywów
Program przedmiotu “Opracowywanie danych w chemii” 1.Wprowadzenie: przegląd rodzajów danych oraz metod ich opracowywania. 2.Podstawowe pojęcia rachunku.
MODELOWANIE ZMIENNOŚCI CEN AKCJI
Warstwowe sieci jednokierunkowe – perceptrony wielowarstwowe
Podstawowe pojęcia i terminy stosowane w statystyce
Statystyczne parametry akcji Średnie Miary rozproszenia Miary współzależności.
Statystyczna analiza danych w praktyce
Jak mierzyć asymetrię zjawiska? Wykład 5. Miary jednej cechy  Miary poziomu  Miary dyspersji (zmienności, zróżnicowania, rozproszenia)  Miary asymetrii.
Statystyczna analiza danych
Statystyczna analiza danych
Statystyczna analiza danych
Ekonometria stosowana Heteroskedastyczność składnika losowego Piotr Ciżkowicz Katedra Międzynarodowych Studiów Porównawczych.
STATYSTYKA – kurs podstawowy wykład 8 dr Dorota Węziak-Białowolska Instytut Statystyki i Demografii.
Małgorzata Podogrodzka, SGH ISiD
Statystyka matematyczna
Jednorównaniowy model regresji liniowej
MNK – podejście algebraiczne
Własności asymptotyczne ciągów zmiennych losowych
MIARY STATYSTYCZNE Warunki egzaminu.
Zapis prezentacji:

Elementy Rachunku Prawdopodobieństwa i Statystyki Wykład 6 Momenty, moda, mediana i kwantyle Wartości oczekiwane i wariancje dla Z.L. wielowymiarowych Kowariancja i korelacja Prawo przenoszenia błędów (1) Tomasz Szumlak, WFiIS, 12/04/2013

Momenty Wartość oczekiwana zdefiniowana na ostatnim wykładzie: Wybierzmy funkcję g(x) jak poniżej: wówczas, wyrażenie nazywamy momentem rzędu „r” względem punktu „a”. Jeżeli wybierzemy punkt „a” jako: dostaniemy tzw. momenty centralne (szczególnie ważne w statystyce)

Momenty W szczególności mamy: czyli, drugi moment centralny, możemy zidentyfikować jako wariancję Z.L. X Uwaga! Powyższe rozważania dotyczą oczywiście obu rodzajów Z.L. jakie dyskutowaliśmy, tzn. ciągłych i dyskretnych: Podobnie możemy zdefiniować momenty główne:

Momenty Istnieje prosty związek, pomiędzy momentami centralnymi i głównymi: Zauważmy, że: Można również łatwo pokazać, że gdy wartość oczekiwana dla danej Z.L. E(X) = 0, wówczas momenty centralne równe są momentom głównym. To ciekawa obserwacja, np. dla zmiennej standardowej (ostatni wykład) oba typy momentów są równe z definicji!

Momenty – skośność Jeżeli funkcja R.G.P. jest niesymetryczna, można wprowadzić pewną miarę, która będzie opisywać stopień odkształcenia rozkładu, nazywamy ją skośnością Dla rozkładów symetrycznych skośność zanika!

Można pokazać, że dowolny R.G.P. można określić używając momentów Momenty – kurtoza Ostatnią z najczęściej stosowanych miar, określających własności funkcji R.G.P. jest kurtoza. Stosuje się ją, do określenia stopnia skupienia wartości Z.L. wokół maksimum, podobnie jak w przypadku skośności wprowadza się wygodny parametr bezwymiarowy: „Mała” kurtoza „Duża” kurtoza Można pokazać, że dowolny R.G.P. można określić używając momentów

Moda, mediana, kwantyle Poza wartością oczekiwaną, która jest najczęściej używana do określania tendencji centralnej danej Z.L., stosujemy również inne miary: Moda xm (wartość modalna) – wartość zmiennej losowej, X, odpowiadająca maksimum (globalne lub lokalne) prob. : Jeżeli jedno max. globalne – rozkład nazywamy jednomodalnym, jeżeli więcej max. wówczas nazywamy go wielomodalnym Poniżej rozkład dwumodalny, większe z maksimów nazywamy dominantą Mody

Moda, mediana, kwantyle Mediana x1/2 R.G.P. zdefiniowana jest jako wartość Z.L., dla której mamy: Mediana, dzieli powierzchnię pod krzywą reprezentującą R.G.P. na dwie równe części (w przypadku Z.L. dyskretnej sytuacja może być nieco bardziej skomplikowana – dyskusja na ćwiczeniach). Analogicznie, mediana może zostać wyrażona przez dystrybuantę Z.L. Jeżeli mamy Z.L., która posiada R.G.P. będący funkcją ciągłą oraz symetryczną wokół swojego globalnego maksimum, wówczas wartość średnia, moda oraz mediana są sobie równe!

Moda, mediana, kwantyle Kwantyle, są blisko związane z pojęciem mediany. Np. kwartyle definiujemy jako: powyższe nazywamy dolnym i górnym kwartylem Podobnie, możemy zdefiniować decyle: Ogólnie, kwantylem x nazywamy:

Kowariancja i korelacja Momenty zdefiniowane dla jednowymiarowych zmiennych losowych mogą być łatwo przeniesione do „świata” zmiennych wielowymiarowych. Zdefiniujmy zmienną losową posiadającą n-składowych: Funkcję R.G.P. oraz dystrybuantę oznaczymy jako: Momenty centralne, zdefiniujemy jak poniżej: W szczególności momenty drugiego rzędu zapiszemy jako:

Kowariancja i korelacja Dla wprawy popatrzmy na przypadek dwuwymiarowy: Zakładamy, że rozkład zmiennych X i Y opisany jest przez f(x,y) Wartości oczekiwane dla zmiennych X oraz Y definiujemy jako: Odpowiednio, wariancje:

Kowariancja i korelacja Zarówno wartości oczekiwane jak i wariancje definiujemy podobnie jak w przypadku Z.L. jednowymiarowej. Nowością jest następujące wyrażenie mieszane to samo w postaci jawnej: Można pokazać, że prawdziwe są poniższe tożsamości: Z.L. niezależne

Kowariancja i korelacja Kowariancja nie ma odpowiednika w przypadku jednowymiarowych Z.L. Zawiera ona informacje dotyczące liniowej zależności pomiędzy zmiennymi losowymi X1 (X) oraz X2 (Y), np. gdy zdarzenie: „Tradycyjnie”, najwygodniej jest wprowadzić wielkość bezwymiarową do określenia zależności pomiędzy Z.L. – współczynnik korelacji Łatwo pokazać (np. korzystając z definicji Z.L. w postaci standardowej):

Kowariancja i korelacja Uwaga! Jeżeli wsp. korelacji jest różny od zera, mówimy wówczas, że Z.L. są liniowo zależne – skorelowane W przypadku, gdy wsp. korelacji jest równy „0” (zanika kowariancja) Z.L. nazywamy nieskorelowanymi liniowo (mogą jednak być zależne!)

Przekształcenia liniowe Formalnie zapisujemy T Wróćmy do rozważań dotyczących Z.L. wielowymiarowych, w tym przypadku, możemy zdefiniować tzw. macierz kowariancji (używając wprowadzonych wcześniej oznaczeń) Jest to macierz rzeczywista, symetryczna (ckl = clk), wyrazy diagonalne są po prostu wariancjami: Wprowadźmy zapis: Mamy wówczas: Formalnie zapisujemy T

Przekształcenia liniowe Załóżmy, że chcemy dokonać pomiaru zmiennej losowej Y Może okazać się, że bezpośredni pomiar jest trudny i zamiast tego mierzymy inne zmienne losowe, związane ze zmienną X (np. pomiar rezystancji elementu elektronicznego – mierzymy prąd, I, i napięcie, V) Rozważmy przykład następującej transformacji liniowej Wartość oczekiwana:

Przekształcenia liniowe To prowadzi nas do sformułowania tzw. twierdzenia o przenoszeniu niepewności pomiarowych: Załóżmy, że zachodzi związek pomiędzy Z.L. taki jak na poprzednim slajdzie. Jeżeli znamy wartości oczekiwane, wariancje oraz kowariancje wszystkich Z.L. Xi, to: