Oddziaływanie prądu elektrycznego i pól elektromagnetycznych na organizm człowieka 23 listopada 2006
Elektrostatyka Rozróżniamy ładunki dodatnie i ujemne. W atomie: jądro + elektron - Ładunek elektronu e [C] to ładunek elementarny, każdy ładunek elektryczny jest wielokrotnością e. q = ne e = 1,6·10-19 C, me = 9,11·10-31 kg
Elektrostatyka Elektrony odłączają się od atomów i tworzą gaz elektronowy wypełniający przestrzeń między dodatnimi jonami. Elektrony swobodne to elektrony przewodnictwa. Metale – typowe przewodniki. Szkło, bawełna, jedwab, sztuczne tworzywa – izolatory.
Elektrostatyka Prawo Coulomba (Karol August Coulomb 1785): k0 = 9·109Nm2/C2 k = 1/4π ε0 ε0 – przenikalność el. próżni ε 0 = 1/4πk0 = 8,9·10-12 C2/Nm2 ε = ε 0 ε r ε r – stała dielektryczna 2 – nafta, 1,00 – powietrze, 5 ÷ 10 – szkło 1 – próżnia 81 - woda
Elektrostatyka Prawo Coulomba: siła wzajemnego oddziaływania dwóch naelektryzowanych kulek jest wprost proporcjonalna do iloczynu wartości ich ładunków i odwrotnie proporcjonalna do kwadratu odległości między ich środkami. Zależy ona także od ośrodka.
Elektrostatyka Zasada zachowania ładunku, w układzie izolowanym elektrycznie, ładunek może być przemieszczany z jednego ciała na drugie, ale jego całkowita wartość (suma algebraiczna) nie może ulec zmianie.
Elektrostatyka Natężeniem pola elektrostatycznego E w danym punkcie nazywamy stosunek siły elektrycznej działającej na umieszczony w tym punkcie ładunek próbny do wartości tego ładunku.
Elektrostatyka Wypadkowe natężenie pola elektrostatycznego oblicza się stosując zasadę superpozycji – sumowania wektorów natężeń od poszczególnych ładunków punktowych.
Elektrostatyka Potencjałem pola elektrostatycznego V nazywamy iloraz energii potencjalnej punktowego ciała naelektryzowanego ładunkiem q i wartości tego ładunku
Prąd elektryczny Napięciem między zaciskami danego odbiornika energii elektrycznej nazywamy iloraz mocy P wydzielanej w tym odbiorniku i natężenia prądu I płynącego przez ten odbiornik: U = P/I [V] ; P = UI
Prąd elektryczny Ruch elektronów to prąd elektryczny I = Δq/Δt [1A] = [1C/1s]
Prąd elektryczny Prawo Ohma, sformułowane w 1827 roku, w oparciu o doświadczenia, mówi o prostej proporcjonalności prądu I płynącego przez przewodnik do napięcia U przyłożonego na jego końcach: I = U/R = (V1 – V2)/R ; U = IR
Prąd elektryczny R oznacza współczynnik proporcjonalności zwany oporem elektrycznym (rezystancją). 1Ω = 1V/1A. Opór przewodnika równa się 1 omowi, jeżeli niezmienne napięcie równe 1 woltowi istniejące na końcach przewodnika wywołuje w nim prąd o natężeniu 1 ampera. Opór przewodnika R o długości l, powierzchni przekroju S i oporze właściwym ρ jest równy: R = ρl/S
Prąd elektryczny I Prawo Kirchhoffa: W dowolnym punkcie W obwodu ( węźle) suma algebraiczna natężeń prądów stałych dopływających i odpływających równa się zeru. ΣI = 0
Prąd elektryczny II Prawo Kirchhoffa: W dowolnie wydzielonej zamknietej części obwodu elektrycznego, w tzw. oczku, suma algebraiczna wszystkich napięć elektrycznych panujących na poszczególnych elementach oczka równa się zeru. ΣU = ΣE + ΣIR = 0 E – czynne siły elektromotoryczne IR – spadki potencjałów
Prąd zmienny Zjawisko powstawania prądu indukcyjnego w zamkniętym obwodzie pod wpływem zmian strumienia indukcji magnetycznej nazywamy zjawiskiem indukcji elektromagnetycznej. Powstające prądy nazywamy prądami indukcyjnymi. Ε = Emsinωt.
Prąd zmienny Źródło napięcia, w którym siła elektromotoryczna zmienia się sinusoidalnie, nazywamy źródłem napięcia przemiennego. W Europie f = 50 Hz, Em = 230 V
Porażenie prądem elektrycznym JZ - JR R RC – rezystancja ciała człowieka RP – rezystancja przejścia prądu do ziemi UD - napięcie dotykowe UR – napięcie rażeniowe JZ – prąd zwarcia JR – prąd rażeniowy UD UR RC RP RP
Porażenie prądem elektrycznym Napięcie dotykowe – jest to napięcie między dwoma punktami nie należącymi do obwodu elektrycznego, z którymi mogą zetknąć się jednocześnie ręce lub ręka i stopy, albo inne części ciała człowieka UD = (0,5RP + RC)JR Napięcie rażeniowe – jest to spadek napięcia na drodze przepływu prądu przez ciało człowieka UR = RCJC
Porażenie prądem elektrycznym Najbardziej niebezpieczny jest dla człowieka prąd przemienny o częstotliwości 50 – 60 Hz Stwierdzono, że ludzie są mniej wrażliwi na działanie prądu stałego niż przemiennego. Dotyczy to natężeń do 20 mA Przy prądzie przemiennym 50 – 60 Hz wyprostowanie palców i samodzielne oderwanie ich od przewodu możliwe jest przy natężeniu prądu: dla kobiet ≤ 10,5 mA, dla mężczyzn ≤ 16 mA
Porażenie prądem elektrycznym Zatrzymanie krążenia krwi na czas dłuższy niż 3-5 minut prowadzi nieodwołalnie do śmierci. Spowodowane jest ono zawsze wstrzymaniem lub niedostateczną pracą serca, albo też migotaniem (fibrylacją) komór sercowych. Migotanie komór polega na niesynchronicznych skurczach poszczególnych części mięśnia sercowego dokonujących się z częstotliwością 300-500 skurczów na minutę. Czynnikiem decydującym o wystąpieniu migotania jest obok wartości natężenia prądu czas przepływu. Przy czasach krótszych od 0.2s możliwość wystąpienia migotania jest niewielka
0,6 – 1,6 Prąd wyraźnie wyczuwalny (swędzenie łaskotanie) Objawy działania prądu przemiennego 50 – 60 Hz na człowieka przy przepływie na drodze ręka – ręka lub noga – ręka. Wartość skuteczna prądu [mA] 0 – 0,5 Prąd niewyczuwalny 0,6 – 1,6 Prąd wyraźnie wyczuwalny (swędzenie łaskotanie) 1,6 – 3,5 Cierpnięcie dłoni i przegubów, lekkie sztywnienie rąk 3,5 – 15 Silne sztywnienie rąk, ból przedramion, skurcze dłoni i drżenie rąk; przy wzroście wartości prądu coraz silniejsze skurcze mięśni palców i ramion, zaciskanie się rąk obejmujących przedmiot i niemożność samodzielnego oderwania się 15 – 25 Niekontrolowane skurcze, utrudniony oddech, wzrost ciśnienia krwi; prąd nie powoduje groźnych następstw przy czasie przepływu nie dłuższym niż kilkanaście sekund 25 – 50 Bardzo silne skurcze mięśni rak i klatki piersiowej; nieregularność pracy serca, przy dłuższym działaniu prądu w górnym zakresie – migotanie komór sercowych 50 – 70 Migotanie komór sercowych, porażenie mięśni oddechowych, przy dłuższym działaniu śmierć przez uduszenie > 70 Przy dłuższym działaniu zwykle kończy się śmiercią
Oddziaływanie pól elektromagnetycznych Istnienie pól magnetycznych jest traktowane jako objaw wtórny, jako skutek ruchu ładunków elektrycznych. Ziemia jest wielkim magnesem. Indukcję magnetyczną B definiuje się wykorzystując siłę oddziaływania pola magnetycznego na poruszający się ładunek próbny q0: F = q0(v¤B) B = Fmax/q0v [T]
Indukcja magnetyczna 1T - duża jednostka [N/Am] 10 T - uzyskuje się w laboratoriach 100 T – bardzo krótko B = 10-4T – na powierzchni Ziemi Prąd 100 mA w odległości 1 cm B = 2·10-3 T Układ nerwowy w okolicy klatki piersiowej B = 10-11 T
Oddziaływanie pól elektromagnetycznych Pola elektromagnetyczne powstają: wokół stacji nadawczych radiowych i TV, radarów, urządzeń przemysłowych, zgrzewarek, pieców indukcyjnych, silników, telewizorów… Długotrwałe przebywanie powoduje: bóle i zawroty głowy, zaburzenia snu, zaburzenia pamięci, dolegliwości sercowe, szybkie męczenie, choroby oczu (zaćma).
Oddziaływanie pól elektromagnetycznych Efekty termiczne – część energii jest pochłonięta i zamieniona na ciepło. Progowa gęstość mocy wynosi około 10mW/cm2.. Ze wzrostem długości fali wartości te wyraźnie wzrastają co wiąże się z zależnością współczynnika pochłaniania energii elektromagnetycznej od częstotliwości.
Oddziaływanie pól elektromagnetycznych Ciepło powstające w tkankach pod wpływem pola elektromagnetycznego wytwarzane jest w dwóch procesach: przepływu nośników ładunku przez ośrodek o pewnym oporze i obrotu dipoli cząsteczkowych w ośrodku lepkim
Oddziaływanie pól elektromagnetycznych Efekty termiczne w tkankach wywołane przepływem prądów wysokiej częstotliwości są wykorzystywane w praktyce medycznej jako diatermia. Obecnie prawie wyłącznie stosowane są aparaty krótkofalowe i mikrofalowe. Zastosowanie diatermii: przewlekłe stany zapalne mięśni, tkanki łącznej, stawów i nerwów.
Oddziaływanie pól elektromagnetycznych Różnica między diatermią a innymi metodami ciepłolecznictwa polega na tym, że w przypadku diatermii ciepło wytwarzane jest przede wszystkim wewnątrz tkanek, a nie doprowadzane z zewnątrz. Skutki diatermii: rozszerzenie naczyń krwionośnych, zmniejszenie pobudliwości nerwowo- mięśniowej, zmniejszenie napięcia mięśni, przyspieszenie procesów wchłaniania tkankowego, działanie przeciw bólowe i inne.
Oddziaływanie pól elektromagnetycznych Doświadczenia wykazały, że promieniowanie elektromagnetyczne wpływa na przebieg wielu procesów biologicznych nawet znacznie poniżej efektu termicznego (10 mW/cm2)
Oddziaływanie pól elektromagnetycznych Zmiany morfologiczne Oparzenia, martwice tkanek, degeneracja komórek Najwrażliwsze są tkanki obwodowego i ośrodkowego UN Zmiany w układzie sercowo-naczyniowym Działanie mutagenne Zmniejszenie płodności
Metody ochrony Bierne: organizacja pracy, automatyzacja, skracanie czasu pracy, zakaz pracy poniżej 18 l., kobiet w ciąży, okresowe badania lekarskie. Czynne: Ekranowanie za pomocą blach, siatek, anteny, odzież ochronna konstrukcja urządzeń. Widmo fal elektromagnetycznych dzieli się na cztery zakresy – w zależności od częstotliwości i dla każdego zakresu określa się dopuszczalny czas przebywania w zależności od występującego w danej strefie natężenia
Oddziaływanie pól elektromagnetycznych Należy pamiętać, że pola elektromagnetyczne generowane są przez: Radiotelefony (komórki) Odbiorniki radiowe i telewizyjne Kuchenki mikrofalowe Komputery
Biopotencjały Funkcjonowaniu żywych narządów towarzyszy występowanie potencjałów elektrycznych. Różnice potencjałów występuje pomiędzy wewnętrzną i zewnętrzną stroną błony komórkowej. Różnica ta w zależności od rodzaju komórki wynosi około 40-100 mV. Dla większości neuronów wynosi ona od -40 do -75mV.
Metody badania biopotencjalów Elektrokardiografia EKG – metoda rejestrowania zmian prądów i różnic potencjałów czynnościowych wytwarzanych przez układ bodźcotwórczo-przewodzący w mięśniu sercowym w czasie jego czynności. Elektroencefalografia EEG – metoda badania polegająca na odbiorze prądów czynnościowych mózgu z różnych okolic czaszki lub mózgu. Elektromiografia EMG – metoda badania i rejestracji zjawisk bioelektrycznych (prądów czynnościowych) zachodzących w mięśniach podczas ich pracy.
AMPLITUDA EMG kilka µV do kilku mv
AMPLITUDA EMG
po aproksymacji jako sygnał sterujący pracą mieśni AMPLITUDA EMG po aproksymacji jako sygnał sterujący pracą mieśni