UKŁADY LICZENIA SYSTEMY LICZBOWE

Slides:



Advertisements
Podobne prezentacje
Reprezentacja danych w komputerze
Advertisements

Reprezentowanie i przetwarzanie informacji przez człowieka i komputer. Patrycja Białek.
Liczby wokół nas A. Cedzidło.
Macierze Maria Guzik.
Jest współfinansowany przez Unię Europejską W ramach
SYSTEMY LICZBOWE.
Liczby całkowite.
Zapis informacji Dr Anna Kwiatkowska.
Reprezentacje - zmiennoprzecinkowa
Ministerstwo Edukacji Narodowej
Systemy liczbowe.
Kod Graya.
Aleksandra Duchnowicz kl. 6.d
i kilka przykładów zapisu cyfr
opracowanie: Agata Idczak
Podstawy układów logicznych
Informatyka I Język ANSI C
System dwójkowy i dziesiętny
- potrzeba czy ciekawostka ?
Dane INFORMACYJNE Nazwa szkoły:
Wyrażenia algebraiczne
MATEMATYKA WCZORAJ I DZIŚ
Ułamki dziesiętne Ułamki dziesiętne o mianowniku 10, 100, 1000, ...
RZYMSKI SYSTEM ZAPISYWANIA LICZB
Jednostki w informatyce i system binarny (dwójkowy)
od systemu dziesiętnego do szesnastkowego
System dwójkowy (binarny)
Jak to jest zrobione? Kalkulator.
Dane INFORMACYJNE Gimnazjum nr 2 im. Andrzeja Prądzyńskiego we Wrześni 98_63_mf_g1 Gimnazjum im. Noblistów Polskich w Polanowie 98_49_mf_g1 Opiekuowie:
Nazwa szkoły: Zespół Szkół w Lipinkach Łużyckich ID grup: 98/25 MF G1 Kompetencja: matematyczno-fizyczna Temat projektowy: Historia liczby Semestr/rok.
Niedziesiątkowe systemy liczenia.
Systemy liczbowe.
Systemy Liczenia - I Przez system liczbowy rozumiemy sposób zapisywania i nazywania liczb. Rozróżniamy: pozycyjne systemy liczbowe i addytywne systemy.
Liczby rzeczywiste ©M.
Systemy Liczbowe (technika cyfrowa)
Posługiwanie się systemami liczenia
Podstawy informatyki 2013/2014
ROŻNE SPOSOBY ZAPISYWANIA LICZB. ZAPIS RZYMSKI.
Stało- i zmiennopozycyjna reprezentacja liczb binarnych
Rozwinięcia oktalne ułamków
Matematyka i system dwójkowy
Matematyka Wykonał: Miłosz Kowalski 5A I Informatyka.
Matematyka z Informatyką w parze
KARTY DŹWIĘKOWE.
WYKŁAD 3 Temat: Arytmetyka binarna 1. Arytmetyka binarna 1.1. Nadmiar
Dwójkowy system liczbowy
T. 3. Arytmetyka komputera. Sygnał cyfrowy, analogowy
ÓSEMKOWY SYSTEM LICZBOWY
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Od cyfr egipskich do cyfr arabskich...
CZYM JEST KOD BINARNY ?.
Rzymski system liczbowy
System dwójkowy (binarny)
Jan Koźmiński i Łukasz Miałkas IIIA Gimnazjum w Borui Kościelnej.
Liczby 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, …(i tak dalej) nazywamy liczbami naturalnymi. Tak jak z liter tworzy się słowa, tak z cyfr tworzymy liczby. Dowolną.
Liczby naturalne i całkowite Wykonanie: Aleksandra Jurkowska Natalia Piłacik Paulina Połeć Klasa III a Gimnazjum nr 1 w Józefowie Ul. Leśna 39 O5 – 420.
LICZBY NATURALNE I CAŁKOWITE. Liczby Naturalne Liczby naturalne – liczby używane powszechnie do liczenia (na obiedzie były trzy osoby) i ustalania kolejności.
Liczby naturalne i całkowite Spis treści Definicje Działania na liczbach Wielokrotności liczb naturalnych Cechy podzielności Przykłady potęg,potęgi o.
Liczbami naturalnymi nazywamy liczby 0,1,2,3,..., 127,... Liczby naturalne poznaliśmy już wcześniej; służą one do liczenia przedmiotów. Zbiór liczb.
URZĄDZENIA TECHNIKI KOMPUTEROWEJ Zapis liczb binarnych ze znakiem.
Copyright 2009 © by Michał Szymański. Systemy liczbowe można porównać do języków świata. Tak jak jedno słowo można przedstawić w wielu różnych językach,
Niedziesiątkowe systemy liczenia
HISTORIA CYFR RZYMSKICH
Podstawy Informatyki.
Niedziesiątkowe systemy liczenia
Systemy liczbowe.
Niedziesiętne systemy liczbowe
Wstęp do Informatyki - Wykład 6
RZYMSKI SYSTEM ZAPISYWANIA LICZB
Zapis prezentacji:

UKŁADY LICZENIA SYSTEMY LICZBOWE

SYSTEM LICZBOWY  jest to zbiór reguł jednolitego zapisu i nazewnictwa liczb. Do zapisywania liczb używa się skończonego zbioru znaków, zwanych cyframi, które można łączyć w dowolnie długie ciągi, otrzymując nieskończoną liczbę kombinacji.

podział -rozróżnia się systemy liczbowe pozycyjne i niepozycyjne (addytywne). W systemach liczbowych pozycyjnych liczbę przedstawia się jako ciąg cyfr. Wartość jej jest zależna od położenia cyfry w liczbie. Do systemów pozycyjnych zaliczamy m.in.: dziesiątkowy, dwójkowy, ósemkowy, szesnastkowy. Do addytywnych systemów liczbowych zaliczamy m.in.: rzymski, hieroglificzny, alfabetyczny, gdzie wartość liczby jest sumą wartości jej znaków cyfrowych. 

SYSTEMY POZYCYJNE DZIESIĄTKOWY  zwany też systemem decymalnym lub arabskim to pozycyjny system liczbowy, w którym podstawą pozycji są kolejne potęgi liczby 10. Do zapisu liczb potrzebne jest więc w nim 10 cyfr: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Jak w każdym pozycyjnym systemie liczbowym, liczby zapisuje się tu jako ciąg cyfr, z których każda jest mnożnikiem kolejnej potęgi liczby stanowiącej podstawę systemu. Część całkowitą i ułamkową oddziela separator dziesiętny. Zapis „5045.7”: 5 x 103 +0 x 102 + 4 x 101 + 5 x 100 + 7 x 10-1 = 5000 + 0 + 40 + 5 + 0,7 = 5045,7 Pozycyjny, dziesiętny system liczbowy jest obecnie na świecie podstawowym systemem stosowanym niemal we wszystkich krajach. Oryginalnie pochodzi on z Indii, z których przedostał się do Europy za pośrednictwem Arabów. Od XVI wieku stosowano go obok systemu rzymskiego, w nauce, księgowości oraz tworzącej się właśnie bankowości, gdyż system ten znacznie upraszcza operacje arytmetyczne. W oficjalnych dokumentach jednak nadal zamieniano liczby w zapisie arabskim na system rzymski. W końcu, dzięki praktycznym zaletom system rzymski został prawie zupełnie wyparty na korzyść arabskiego.

DWÓJKOWY SYSTEM LICZBOWY Zwany systemem binarnym lub zero-jedynkowym.  System liczbowy, w którym podstawą jest liczba 2. Do zapisu liczb potrzebne są więc tylko dwie cyfry: 0 i 1. Powszechnie używany w elektronice cyfrowej, gdzie minimalizacja liczby stanów (do dwóch) pozwala na prostą implementację sprzętową odpowiadającą zazwyczaj stanom wyłączony i włączony oraz zminimalizowanie przekłamań danych. Co za tym idzie, przyjął się też w informatyce.Jak w każdym pozycyjnym systemie liczbowym, liczby zapisuje się tu jako ciągi cyfr, z których każda jest mnożnikiem kolejnej potęgi podstawy systemu. Indeksy: 10102 = 1010 1 x 23 + 0 x 22 + 1 x 21 + 0 x 20 = 8 + 2 = 10 Systemu używał już John Napier ,(szkocki matematyk, odkrywca logarytmów),w XVI wieku, przy czym 0 i 1 zapisywał jako a i b.

Z SYSTEMU DZIESIĘTNEGO NA DWÓJKOWY Cyfra 1 podobnie jak w systemie dziesiętnym ma wartość zależną od swojej pozycji - na końcu oznacza 1, na drugiej pozycji od końca 2, na trzeciej 4, na czwartej 8, itd. Ponieważ   0 x 2n = 0 oraz  1 x 2n = 2n aby obliczyć wartość liczby zapisanej dwójkowo, wystarczy zsumować potęgi dwójki odpowiadające cyfrom 1 w zapisie. 3010 = ( 3 x 10 + 0 x 1)10 = (11 x 1010 + 0 x 1)2 = 111102 Rozbicie na sumę potęg liczby 2: 3010 = (16 + 8 + 4 + 2)10 = (10000 + 1000 + 100 + 10)2 = 111102 Bądź też przez wyznaczanie reszt w wyniku kolejnych dzieleń liczby przez 2: 30 ÷ 2 = 15 reszty 0 - 0 to cyfra jedności, 15 ÷ 2 = 7 reszty 1 - 1 to cyfra drugiego rzędu, 7 ÷ 2 = 3 reszty 1 3 ÷ 2 = 1 reszty 1 1 ÷ 2 = 0 reszty 1 Aby obliczyć wartość dwójkową liczby przepisujemy od końca cyfry reszty.

OBLICZENIA Działania na liczbach w systemie dwójkowym są odpowiednikiem działań w systemie dziesiętnym, i opierają się na elementarnych działaniach: 1+ 0 = 1 1 + 1 = 10 1* 0 = 0 1 * 1 = 1 10 - 1 = 1

ÓSEMKOWY SYSTEM LICZBOWY pozycyjny system liczbowy o podstawie 8. System ósemkowy jest czasem nazywany oktalnym od słowa octal. Do zapisu liczb używa się w nim ośmiu cyfr, od 0 do 7. Jak w każdym pozycyjnym systemie liczbowym, liczby zapisuje się tu jako ciągi cyfr, z których każda jest mnożnikiem kolejnej potęgi liczby będącej podstawą systemu. Indeksy: 1448 = 10010 1 x 82 + 4 x 81 + 4 x 80 = 64 + 32 + 4 = 100 100/8 = 12 i 4 reszty = 4 12/8 = 1 i 4 reszty = 4 1/8 = 0 i 1 reszty = 1 Teraz czytamy od dołu: 144 w systemie oktalnym to 100 w systemie dziesiętnym.

DWUNASTKOWY SYSTEM LICZBOWY  Pozycyjny system liczbowy, w którym podstawą pozycji są kolejne potęgi liczby 12. Do zapisu liczb potrzebne jest dwanaście cyfr. Poza cyframi dziesiętnymi od 0 do 9 używa się pierwszych dwóch liter alfabetu łacińskiego: A i B. Liczby zapisuje się tu jako ciągi cyfr, z których każda jest mnożnikiem kolejnej potęgi liczby stanowiącej podstawę systemu. Indeksy: 6B412 = 100010 6 x 122 + 11 x 121 + 4 x 120 = 864 + 132 + 4 = 1000 System dwunastkowy używany był na Bliskim Wschodzie w Babilonii, używano go równolegle z systemem dziesiętnym. W niewielkim zakresie systemu dwunastkowego używano także w starożytnym Rzymie, gdzie starożytna jednostka monetarna As składała się z 12 uncji. Również średniowieczny system monetarny w Europie opierał się częściowo na systemie dwunastkowym: pieniądze liczono m.in. w solidach, które zawierały po 12 denarów. (pozostałość tego systemu monetarnego przetrwała do 2. połowy XX w. w krajach powiązanych kulturowo z Wielką Brytanią, a w samej Wielkiej Brytanii aż do roku 1971, gdzie do tej daty szyling dzielił się na 12 pensów).

SZESNASTKOWY SYSTEM LICZBOWY Pozycyjny system liczbowy, w którym podstawą jest liczba 16. Do zapisu liczb w tym systemie potrzebne jest szesnaście znaków. W najpowszechniejszym standardzie poza cyframi dziesiętnymi od 0 do 9 używa się pierwszych sześciu liter alfabetu łacińskiego: A, B, C, D, E, F (wielkich lub małych). Cyfry 0-9 mają te same wartości co w systemie dziesiętnym, natomiast litery odpowiadają następującym wartościom: A = 10, B = 11, C = 12, D = 13, E = 14 oraz F = 15. Indeksy: 3E816 = 100010 3 x 162 + 14 x 161 + 8 x 160 = 768 + 224 + 8 = 1000 Wiele kalkulatorów naukowych ma dostępny dla użytkownika system szesnastkowy. Umożliwiają one zwykłe operacje na liczbach w tej postaci oraz ich konwersję do innych systemów pozycyjnych. Wiele parametrów układów elektronicznych  podaje się w systemie szesnastkowym. Szesnastkowy system liczbowy stosuje się w informatyce, w przypadku programowania niskopoziomowego, sterowania sprzętem komputerowym, wyboru adresów itp.

Agnieszka Malinowska Id KONIEC DZIĘKUJE ZA UWAGE Agnieszka Malinowska Id