Jacek Dobaczewski University of Warsaw & University of Jyväskylä Pathologies of current multi-reference EDF calculations Atelier de l’Espace de Structure Nucléaire Théorique novembre 2007 CEA/SPhN, Ormes des Merisiers, Bât. 703 F Gif-sur-Yvette Cedex.
Jacek Dobaczewski Outline 1.Introduction. 2.Hohenberg-Kohn and Kohn-Sham theorems. 3.Particle-Number Projection and the Density Functional Theory”, J. Dobaczewski, M.V. Stoitsov, W. Nazarewicz, and P.-G. Reinhard, arXiv/ , Physical Review C, in press 4.Summary and conclusions.
Jacek Dobaczewski mean field one-body densities zero range local densities finite range non-local densities Hohenberg-Kohn Kohn-Sham Negele-Vautherin Landau-Migdal Nilsson-Strutinsky Modern Mean-Field Theory Energy Density Functional j, , , J, T, s, F, Nuclear densities as composite fields
Jacek Dobaczewski Hohenberg-Kohn theorem
Jacek Dobaczewski Hohenberg-Kohn theorem (trivial version)
Jacek Dobaczewski Nuclear Energy Density Functional (physical insight)
Jacek Dobaczewski Particle-number-projection (PNP) operator
Jacek Dobaczewski Shifted HFB states
Jacek Dobaczewski z iu/v below = z -iu/v above = z -iu/v below = z iu/v above = z 0 = z 1 = HFB state Im[z] Re[z] C0 C1 C2
Jacek Dobaczewski Method of residues
Jacek Dobaczewski Poles of transition density matrices
Jacek Dobaczewski DFT transition energy density
Jacek Dobaczewski Projected DFT energy
Jacek Dobaczewski
Fractional powers
Jacek Dobaczewski Im[z] C0 C1’ C2’ Im[z] Re[z] Im[z]
Jacek Dobaczewski 18 O
Jacek Dobaczewski 26 O
Jacek Dobaczewski
Summary and conclusions 1.The transition density matrices connecting states having different orientation in the gauge plane z have poles on the imaginary axis 2.The DFT sum rules offer the interpretation of the projected DFT energies as Fourier components [associated with irreducible representations of gauge group U(1)] of the DFT transition energy density. 3.The discussion of the particle number restoration can be extended to other symmetry restoration problems. 4.For the terms in the density functional that have polynomial density dependence, the appearance of poles inside the contour gives rise to sudden jumps of the projected energy whenever the contour's pole content changes. 5.As a practical measure that allows avoiding problems related to the fractional-power density dependence, we propose using the integration contours which pass near and above the poles.
Jacek Dobaczewski Complete local energy density Mean field Pairing E. Perlińska, et al., Phys. Rev. C69 (2004)
Jacek Dobaczewski Mean-field equations
Jacek Dobaczewski Nuclear densities as composite fields
Jacek Dobaczewski Local energy density: (no isospin, no pairing)
Jacek Dobaczewski Sum rules
Jacek Dobaczewski