TOMASZ WALCZAK, BOGDAN MARUSZEWSKI, ROMAN JANKOWSKI Zastosowanie współczesnych metod numerycznych w projektowaniu implantów TOMASZ WALCZAK, BOGDAN MARUSZEWSKI, ROMAN JANKOWSKI Instytut Mechaniki Stosowanej, Politechnika Poznańska, Katedra Neurochirurgii i Neurotraumatologii, Uniwersytet w Poznaniu
Choroba zwyrodnieniowa kręgosłupa Dotyczy każdego człowieka już po 18 roku życia Spowodowana jest często nieprawidłowa konformacją kręgosłupa
Prowadzi do nieprawidłowego rozkładu obciążeń i naprężeń Prowadzi do degeneracji stawów oraz dysków międzykręgowych
Dysk zdrowy Dysk stary
Dysk częściowo zdegenerowany Dysk całkowicie zdegenerowany
W konsekwencji prowadzi do wypadania dysków – dyskopatii Utraty stabilności kręgosłupa Ucisk na rdzeń kręgowy Dolegliwości bólowe Niedokrwienie mózgu Paraliż
Leczenie operacyjne dyskopatii Operacyjne usunięcie dysku międzykręgowego Wstawienie implantu ze stopów tytanu, włókien węglowych, PEEK Odzyskanie stabilności kręgosłupa Zmniejszenie ruchliwości
Implanty
Proteza Bryana – sztuczny dysk
Dlaczego projektować nowe implanty? 92% przypadków prezentuje radiologiczne cechy przeciążenia sąsiednich jednostek ruchowych, co nie zawsze ma związek z pogorszeniem stanu klinicznego. Z badań eksperymentalnych wynika, że segmenty sąsiadujące z usztywnionymi jednostkami ruchowymi narażone są na przeciążenie i zwiększoną ruchomość. Również obserwacje kliniczne wskazują na rozwój zmian zwyrodnieniowych w sąsiednich jednostkach ruchowych u 25 – 50% chorych po 10 latach. Od 6 do 19% z tych chorych wymagało ponownej operacji szyjnego odcinka kręgosłupa.
Dlaczego projektować nowe implanty? Ogromne koszty najprostszych implantów Brak indywidualizacji problemu Brak konkurencji w Polsce Wciąż brak idealnych materiałów
Stosowane metody obliczeniowe Metoda Elementów Skończonych (MES) Najpopularniejsza Łatwo dostępna Brak alternatyw
F. Galbusera et al. / Medical Engineering & Physics 30 (2008) 1127–1133
Wady metody MES Duże nakłady finansowe Bardzo duża złożoność obliczeniowa Duże nakłady czasowe
Metoda rozwiązań podstawowych Stosowana od lat 50 XX wieku Stosowana do rozwiązywania każdego równania różniczkowego, którego znamy rozwiązania podstawowe Bezsiatkowa Do znalezienia rozwiązania wystarcza zdefiniować warunki brzegowe w punktach kolokacji oraz zbiór punktów na zewnątrz badanego obszaru – tzw. punktów źródłowych
Punkty kolokacji Punkty źródłowe (z) Badany obszar (x) Rozwiązanie podstawowe : U=U(x,z) pewna funkcja spełniająca równanie rządzące w obszarze Rozwiązanie zagadnienia definiujemy jako kombinację liniową rozwiązań podstawowych Współczynniki tej kombinacji wyznaczamy w taki sposób aby rozwiązanie spełniało warunki brzegowe w zadanych punktach kolokacji
Równania rządzące Na gruncie liniowej teorii sprężystości dla jednorodnego ciała o stałych parametrach materiałowych w trójwymiarowym obszarze Ω równania Cauchyego-Naviera dla przemieszczeń u1, u2, u3 maja postać:
warunki brzegowe zdefiniowanymi na ∂Ω postaci: gdzie ∂Ω jest brzegiem obszaru Ω a operator Bi dla i=1,2,3 określa warunek brzegowy Dirichleta, Neumanna lub Robina.
Definiując odkształcenie eij jako: naprężenia możemy otrzymać z prawa Hooka: i za ich pomocą wyrazić oddziaływujące siły ti w postaci: w powyższych wzorach stałe Lamego λ i μ określone są zależnościami: gdzie E jest modułem sprężystości a ν współczynnikiem Poissona.
Dla ulokowanego na zewnątrz badanego obszaru punktu źródłowego Z działającego na punkt rozwiązania podstawowe układu równań Cauchyego-Naviera mają postać:
Rozwiązanie (poszukiwane przemieszczenia) otrzymujemy jako kombinację liniową rozwiązań podstawowych postaci: Gdzie 3N wymiarowy wektor Z zawiera współrzędne punktów źródłowych Zj natomiast N wymiarowe wektory a, b, c zawierają niewiadome współczynniki. Po rozwiązaniu powyższego układu równań liniowych z 3N niewiadomymi współczynnikami możemy wyznaczyć zgodnie z powyższymi wzorami naprężenia, przemieszczenia oraz odkształcenia w dowolnym punkcie rozważanego obszaru.
Zalety metody Prostota implementacji Możliwość kontroli błędów rozwiązania na poziomie algebry liniowej Możliwość szacowania dokładności rozwiązania na podstawie spełniania warunków brzegowych Możliwość poprawy jakości rozwiązań poprzez odpowiednią regulację położeń punktów kolokacji i punktów źródłowych Mnogość zagadnień jakie można efektywnie rozwiązać za pomocą tej metody
Wciąż nie ma na rynku dostępnego systemu stosującego metodę rozwiązań podstawowych do rozwiązywania różnych zagadnień inżynierskich!!!
Dziękuję za uwagę