Wykład 7: Moc Moc testu to prawdopodobieństwo odrzucenia H0, gdy prawdziwa jest HA Moc=czułość testu Moc = 1 – Pr (nie odrzucamy H0, gdy prawdziwa jest.

Slides:



Advertisements
Podobne prezentacje
ESTYMACJA PRZEDZIAŁOWA
Advertisements

Test zgodności c2.
Rangowy test zgodności rozkładów
Układy eksperymentalne analizy wariancji. Analiza wariancji Planowanie eksperymentu Analiza jednoczynnikowa, p poziomów czynnika, dla każdego obiektu.
Wykład 9 Analiza wariancji (ANOVA)
Wykład 11 Przykład z muszkami (krzyżówka wsteczna CcNn z ccnn)
Wykład 8 Zrandomizowany plan blokowy
Porównywanie średnich dwóch prób niezależnych o rozkładach normalnych (test t-studenta)
Analiza wariancji jednoczynnikowa
Zmienne losowe i ich rozkłady
Analiza wariancji Marcin Zajenkowski. Badania eksperymentalne ANOVA najczęściej do eksperymentów Porównanie wyników z 2 grup lub więcej Zmienna niezależna.
BUDOWA MODELU EKONOMETRYCZNEGO
Statystyka w doświadczalnictwie
Wykład 7 Przedział ufności dla 1 – 2
Wykład 6 Standardowy błąd średniej a odchylenie standardowe z próby
Wyklad 9 Moc Moc testu to p-stwo odrzucenia H0 gdy prawdziwa jest HA
Wykład 8 Testy Studenta Jest kilka różnych testów Studenta. Mają one podobną strukturę ale służą do testowania różnych hipotez i różnią się nieco postacią.
Wykład 10 Układ zrandomizowany blokowy
Wykład 3 Wzór Bayesa – wpływ rozkładu a priori.
Wykład 5 Przedziały ufności
Wykład 11 Analiza wariancji (ANOVA)
Wykład 3 Wzór Bayesa, cd.: Wpływ rozkładu a priori.
Wykład 4 Przedziały ufności
Test t-studenta dla pojedynczej próby
Próby niezależne versus próby zależne
Próby niezależne versus próby zależne
Porównywanie średnich dwóch prób zależnych
Rozkład normalny Cecha posiada rozkład normalny jeśli na jej wielkość ma wpływ wiele niezależnych czynników, a wpływ każdego z nich nie jest zbyt duży.
Średnie i miary zmienności
Jednoczynnikowa analiza wariancji (ANOVA)
Elementy statystyki dla lekarzy Planowanie badań i zbieranie danych
Rozkład t.
Hipotezy statystyczne
Testy nieparametryczne
Elementy Rachunku Prawdopodobieństwa i Statystyki
Konstrukcja, estymacja parametrów
Testowanie hipotez statystycznych
Testy nieparametryczne
BADANIE STATYSTYCZNE Badanie statystyczne to proces pozyskiwania danych na temat rozkładu cechy statystycznej w populacji. Badanie może mieć charakter:
Analiza wariancji jednoczynnikowa.
Testy nieparametryczne
Modelowanie ekonometryczne
Hipotezy statystyczne
Elementy Rachunku Prawdopodobieństwa i Statystyki
Statystyka - to „nie boli”
Planowanie badań i analiza wyników
Porównywanie średnich 2 i więcej prób o rozkładach innych niż normalny
Seminarium licencjackie Beata Kapuścińska
Testowanie hipotez statystycznych
ANALIZA ANOVA - KIEDY? Wiele przedsięwzięć badawczych zakłada porównanie pomiędzy średnimi z więcej niż dwóch populacji lub dwóch warunków eksperymentalnych.
Porównywanie średnich prób o rozkładach normalnych (testy t-studenta)
Ekonometryczne modele nieliniowe
Wnioskowanie statystyczne
Wykład 5 Przedziały ufności
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych dr hab. Mieczysław Kowerski
Podstawowe pojęcia i terminy stosowane w statystyce
Testowanie hipotez Jacek Szanduła.
Treść dzisiejszego wykładu l Weryfikacja statystyczna modelu ekonometrycznego –błędy szacunku parametrów, –istotność zmiennych objaśniających, –autokorelacja,
Przeprowadzenie badań niewyczerpujących, (częściowych – prowadzonych na podstawie próby losowej), nie daje podstaw do formułowania stanowczych stwierdzeń.
Testy nieparametryczne – testy zgodności. Nieparametryczne testy istotności dzielimy na trzy zasadnicze grupy: testy zgodności, testy niezależności oraz.
Rozkłady statystyk z próby dr Marta Marszałek Zakład Statystyki Stosowanej Instytut Statystyki i Demografii Kolegium.
Weryfikacja hipotez statystycznych „Człowiek – najlepsza inwestycja”
STATYSTYKA – kurs podstawowy wykład 11
Testy nieparametryczne
Rozkład z próby Jacek Szanduła.
Statystyka matematyczna
Statystyka matematyczna
Jednorównaniowy model regresji liniowej
Analiza niepewności pomiarów Zagadnienia statystyki matematycznej
Zapis prezentacji:

Wykład 7: Moc Moc testu to prawdopodobieństwo odrzucenia H0, gdy prawdziwa jest HA Moc=czułość testu Moc = 1 – Pr (nie odrzucamy H0, gdy prawdziwa jest HA) = 1 – Pr(błąd II-go rodzaju) = 1- Na ogół chcemy, aby test miał dużą moc

Test Studenta dla dwóch niezależnych prób z rozkładu normalnego Jeżeli μ1- μ2 ≠0 to T ma niecentralny rozkład Studenta z parametrem niecentralności i n1 + n2 -2 stopniami swobody

Moc testu Studenta Fδ,df(x) – dystrybuanta niecentralnego rozkładu Studenta w punkcie x tc – wartość krytyczna testu Studenta na poziomie istotności α, tzn. F0,df(tc) =1-α/2. Moc = 1- Fδ,df(tc)+ Fδ,df(-tc) δ i df są podane na poprzednim slajdzie

Moc zależy od a) wielkości sygnału μ1- μ2 b) rozmiaru prób c) standardowego odchylenia σ d) poziomu istotności α

Test Wilcoxona-Manna-Whitneya Test Studenta wymaga normalności rozkładów w obu populacjach. Jak porównać dwie populacje, w których rozkład cechy nie jest normalny, a rozmiar prób nie jest na tyle duży, aby korzystać z CTG. Test Manna-Whitneya nie wymaga założenia o normalności.

H0: w obu populacjach badana cecha ma ten sam rozkład HA: badana cecha ma inny rozkład w obu populacjach Test wykrywa głównie różnicę w parametrze położenia (np. rozkłady mają różne mediany) Test nieczuły na różnice w parametrach rozrzutu.

Łączymy obie próby otrzymując zbiór n1+n2 liczb. Procedura: Łączymy obie próby otrzymując zbiór n1+n2 liczb. Porządkujemy otrzymany zbiór: Rangę 1 przypisujemy wartości  najmniejszej, Rangę 2 kolejnej itd. Dla każdej próby obliczamy sumę rang wartości pochodzących z tej próby. Otrzymujemy liczby R1 i R2. Statystyka testowa to R=min(R1,R2).                                                                                                                                                                                                                                                                                                                                    

Przykład Zliczamy liczbę ziaren produkowanych przez dwie odmiany pewnej rośliny. Dane: Odmiana 1: 19, 23, 25, 28, 28, 34 (n1 = 6) Odmiana 2: 14, 18, 19, 20, 25 (n2 = 5)

Test: Czy obie odmiany produkują przeciętnie tyle samo ziaren ? H0: Obie odmiany mają ten sam rozkład liczby ziaren HA:Rozkład liczby ziaren u odmiany 2 jest inny niż u odmiany 1 Użyjemy testu Manna-Whitneya. Tablice wartości krytycznych są zamieszczone w internecie razem z wykładami (źródło:http://fsweb.berry.edu/academic/education/vbissonnette/tables/wilcox_r.pdf )

Planowanie eksperymentu Rodzaje badań: Badania obserwacyjne Badania eksperymentalne

Badania obserwacyjne Przykłady: Poziom rtęci u ryb z różnych jezior Poziom cholesterolu u wegetarian i ``mięsożerców’’ Czy waga noworodków zależy od tego czy matka nadużywała alkoholu ? Zbieramy informacje o istniejącej sytuacji Brak kontroli nad poziomem czynnika wpływu Dużo nieznanych powiązań. Może się zdarzyć, że faktycznie będziemy mierzyć wpływ innego, powiązanego czynnika. Niepewne wnioski naukowe.

Badania eksperymentalne: Przykłady Obserwujemy stan pacjentów biorących lekarstwo i placebo Stosujemy cztery różne nawozy i mierzymy wydajność Stosujemy różne ilości dodatku do paszy dla świń i mierzymy przyrost wagi Wpływamy na sytuację i mierzymy wynik. Mamy kontrolę nad jednym lub kilkoma czynnikami (choć niekoniecznie nad wszystkimi). Bardziej wiarygodne wnioski naukowe

Badania eksperymentalne cd. Zmienna zależna/objaśniana (odpowiedź): efekt, który mierzymy Zmienna niezależna/objaśniająca: czynniki, które kontrolujemy, np. rodzaj lekarstwa Zmienne zakłócające: czynniki, nad którymi nie mamy kontroli, np. waga pacjenta Przypisanie – decyzja, jaki poziom czynnika zastosujemy u każdego pacjenta.

Eksperyment zrandomizowany Najbardziej oczywista metoda przypisania Musimy znać: Liczbę czynników Możliwe poziomy każdego czynnika Zadaną kombinację poziomów czynników będziemy nazywali ``zabiegiem’’

Eksperyment zrandomizowany, cd. Wnioski wyciągamy zakładając losowe próbkowanie z populacji (próba losowa) Próbę rozdzielamy losowo na części, które poddane zostaną różnym „zabiegom”.

Przykład 1– testowanie lekarstwa 500 pacjentek zgodziło się na przetesto-wanie nowego lekarstwa na raka piersi Ta próba reprezentuje populację kobiet z rakiem piersi, po zabiegu Dzielimy tę próbę LOSOWO na dwie, np. równe, grupy (po 250 osób) Można użyć tablicy liczb pseudolosowych

Przykład 1 cd. Jedna grupa dostaje lekarstwo, a druga placebo W okresie 5-lat obserwujemy częstość nawrotu raka w obu grupach Jeżeli zaobserwujemy istotną różnicę w częstościach, to z dużą pewnością będziemy mogli twierdzić, że jest to wpływ lekarstwa

Przykład 2: Różne dawki Jeden czynnik, ale na kilku poziomach Lekarstwo w dawkach 0, 10, 20, 30, 40 mg Dzielimy pacjentki LOSOWO na 5 grup (niekoniecznie równe rozmiary)

Przykład 3: Trzy czynniki Cztery różne lekarstwa Dwa różne zabiegi chirurgiczne Naświetlania lub nie 4 x 2 x 2 = 16 możliwych ``zabiegów’’ Dzielimy 500 losowo na 16 grup zabiegowych, niekoniecznie równych rozmiarów Im więcej czynników, tym liczniejsza powinna być próba