Reinhard Kulessa1 Wykład 13 4.4.1 Środek masy 4.4.2 Zderzenia w układzie środka masy 4.3.3 Sprężyste zderzenie centralne cząstek poruszających się c.d.

Slides:



Advertisements
Podobne prezentacje
Wykład Mikroskopowa interpretacja entropii
Advertisements

Wykład Prawo Coulomba W 1785 roku w oparciu o doświadczenia z ładunkami Charles Augustin Coulomb doszedł do trzech następujących wniosków dotyczących.
Wykład Prawo Coulomba W 1785 roku w oparciu o doświadczenia z ładunkami Charles Augustin Coulomb doszedł do trzech następujących wniosków dotyczących.
5.6 Podsumowanie wiadomości o polu elektrycznym
Wykład Prawo Gaussa w postaci różniczkowej E
Wykład Gęstość energii pola elektrycznego
Wykład Model przewodnictwa elektrycznego c.d
Wykład Zależność pomiędzy energią potencjalną a potencjałem
6.1 Energia potencjalna jednorodnie naładowanej kuli – jądro atomowe
Wykład 3 Opis ruchu 1.1 Zjawisko ruchu 1.2 Układy odniesienia
Wykład 24 Ruch falowy 11.1 Fala jednowymiarowa
Wykład Drgania wymuszone oscylatora Przypadek rezonansu
Wykład 4 2. Przykłady ruchu 1.5 Prędkość i przyśpieszenie c.d.
Wykład Ruch po okręgu Ruch harmoniczny
Wykład 19 Dynamika relatywistyczna
Wykład 12 8 Zastosowanie termodynamiki statystycznej
Wykład Równanie ciągłości Prawo Bernoulie’ego
Wykład 21 Mechanika płynów 9.1 Prawo Archimedesa
Wykład 13 Ruch obrotowy Zderzenia w układzie środka masy
Reinhard Kulessa1 Wykład Środek masy Zderzenie elastyczne z nieruchomą cząstką 4.4 Całkowity pęd układu cząstek przy działaniu sił
Wykład Efekt Dopplera Znaczenie ośrodka
Wykład 20 Mechanika płynów 9.1 Prawo Archimedesa
Wykład Równania Maxwella Fale elektromagnetyczne
Wykład Opis ruchu planet
Zasady dynamiki Newtona - Mechanika klasyczna
WYKŁAD 6 ATOM WODORU W MECHANICE KWANTOWEJ (równanie Schrődingera dla atomu wodoru, separacja zmiennych, stan podstawowy 1s, stany wzbudzone 2s i 2p,
Wykład 3 dr hab. Ewa Popko Zasady dynamiki
KINEMATYKA Kinematyka zajmuje się związkami między położeniem, prędkością i przyspieszeniem badanej cząstki – nie obchodzi nas, skąd bierze się przyspieszenie.
DYNAMIKA.
UKŁADY CZĄSTEK.
Układy cząstek.
I prawo dynamiki Jeśli cząstka nie oddziałuje z innymi cząstkami, to można znaleźć taki inercjalny układ odniesienia w którym przyspieszenie cząstki jest.
Siły zachowawcze Jeśli praca siły przemieszczającej cząstkę z punktu A do punktu B nie zależy od tego po jakim torze poruszała się cząstka, to ta siła.
Wykład 3 dr hab. Ewa Popko Zasady dynamiki
Wykład III Zasady dynamiki.
Wykład VI. Prędkość kątowa Przyśpieszenie kątowe.
Wykład 16 Ruch względny Bąki. – Precesja swobodna i wymuszona
Wykład 3 2. I zasada termodynamiki 2.1 Wstęp – rodzaje pracy
Wykład 24 Fale elektromagnetyczne 20.1 Równanie falowe
Wykład Równanie telegrafistów 20.4 Zjawisko naskórkowości.
Elektryczność i Magnetyzm II semestr r. akademickiego 2002/2003
Wykład 17 Ruch względny dla prędkości relatywistycznych
Wykład Impedancja obwodów prądu zmiennego c.d.
Wykład 22 Ruch drgający 10.1 Oscylator harmoniczny
5.5 Mikro- i makrostany oraz prawdopodobieństwo termodynamiczne cd.
Wykład Równanie Clausiusa-Clapeyrona 7.6 Inne równania stanu
Wykład Opory ruchu -- Siły tarcia Ruch ciał w płynach
Wykład Moment pędu bryły sztywnej - Moment bezwładności
Wykład Spin i orbitalny moment pędu
Wykład Równania Maxwella Fale elektromagnetyczne
Wykład 2 4. Ładunki elektryczne
FIZYKA dla studentów POLIGRAFII Wykład 3
FIZYKA dla studentów POLIGRAFII Wykład 5
FIZYKA dla studentów POLIGRAFII Wykład 4
Nieinercjalne układy odniesienia
Wykład 23 Ruch drgający 10.1 Oscylator harmoniczny
Opracowała Diana Iwańska
Wykład 3 Dynamika punktu materialnego
MECHANIKA 2 Wykład Nr 11 Praca, moc, energia.
MECHANIKA NIEBA WYKŁAD r.
MECHANIKA 2 Wykład Nr 10 MOMENT BEZWŁADNOŚCI.
Dynamika układu punktów materialnych
DYNAMIKA Dynamika zajmuje się badaniem związków zachodzących pomiędzy ruchem ciała a siłami działającymi na ciało, będącymi przyczyną tego ruchu Znając.
MECHANIKA 2 Wykład Nr 14 Teoria uderzenia.
Ruch jednowymiarowy Ruch - zmiana położenia jednych ciał względem innych, które nazywamy układem odniesienia. Uwaga: to samo ciało może poruszać się względem.
Dynamika punktu materialnego Dotychczas ruch był opisywany za pomocą wektorów r, v, oraz a - rozważania geometryczne. Uwzględnienie przyczyn ruchu - dynamika.
Wykład Rozwinięcie potencjału znanego rozkładu ładunków na szereg momentów multipolowych w układzie sferycznym Rozwinięcia tego można dokonać stosując.
Dynamika ruchu obrotowego
Reinhard Kulessa1 Wykład Ruch rakiety 5 Ruch obrotowy 5.1 Zachowanie momentu pędu dla ruchu obrotowego punktu materialnego Wyznaczanie środka.
Wówczas równanie to jest słuszne w granicy, gdy - toru krzywoliniowego nie można dokładnie rozłożyć na skończoną liczbę odcinków prostoliniowych. Praca.
Zapis prezentacji:

Reinhard Kulessa1 Wykład Środek masy Zderzenia w układzie środka masy Sprężyste zderzenie centralne cząstek poruszających się c.d. 4.4 Całkowity pęd układu cząstek przy działaniu sił zewnętrznych

Reinhard Kulessa2 Powróćmy do rysunku B na str. 13 z poprzedniego wykładu i policzmy maksymalną energię przekazaną masie m 2 w zderzeniu elastycznym dla przypadku m 2 >> m 1. Z zasady zachowania energii (wzór (4.25) ) dla Q = 0 mamy;. Dla m 2 >> m 1, m 1 /m 2 0, p 1 = p 2. Trzy wektory z poprzedniego równania tworzą trójkąt równoramienny Sprężyste zderzenie centralne cząstek poruszających się c.d. 1 2 p1p1 p 1 p 2 B

Reinhard Kulessa3 p1p1 p 1 Otrzymujemy więc:. Możemy więc policzyć energię przekazana ciału o masie m 2 ;, gdzie oznacza energię kinetyczną nadlatującej cząstki o masie m 1 przed zderzeniem. Maksymalna energia zostaje przekazana dla zderzenia centralnego z = 180 o.

Reinhard Kulessa Sprężyste zderzenie centralne cząstek poruszających się Problem ten przerobić we własnym zakresie łącznie z dyskusją różnych wariantów. 4.4 Całkowity pęd układu cząstek przy działaniu sił zewnętrznych Rozważmy N ciał, na które poza siłami wewnętrznymi działają również siły z zewnątrz. Masy tych ciał są odpowiednio m m N.

Reinhard Kulessa5 Siłę wewnętrzną działającą na i-te ciało a pochodzącą od k- tego ciała oznaczmy przez F ik. Na i-te ciało działa więc siła wewnętrzna,.(4.27) Oznaczmy przez F i z siłę zewnętrzną działającą na i-te ciało. Równania ruchu dla N ciał mają następującą postać;. (4.28)

Reinhard Kulessa6 Po dodaniu tych równań otrzymujemy;. Z zasady akcji i reakcji mamy;, czyli. (4.29) Zmiana pędu układu na który działają siły zewnętrzne w czasie, jest równa sumie działających sił zewnętrznych.

Reinhard Kulessa Środek masy Równanie (4.29) możemy zinterpretować bardziej poglądowo, jeśli wprowadzimy pojęcie środka masy. Jeśli mamy układ N ciał z których każde jest rozmieszczone w miejscu r i, to możemy określić położenie środka masy jako:. (4.30) Jeśli mamy układ dwóch ciał, to zgodnie z powyższym wzorem mamy;, lub.

Reinhard Kulessa8 Ostatnie równanie możemy napisać następująco:. m1m1 m2m2 x y z r 2S rSrS r2r2 r1r1 S r 1S Wynika stąd, że:, Czyli środek ciężkości leży na linii łączącej dwie masy. Środek ciężkości dzieli linię łączącą dwie masy w stosunku odwrotnie proporcjonalnym do mas.

Reinhard Kulessa9 Jeśli mamy pewien rozkład masy, to musimy w celu określenia środka masy tego rozkładu wykonać następującą operację całkowania;, (4.30a) gdzie określa gęstość i. Ruch środka masy dowolnego układu cząstek możemy opisać bardzo prostymi równaniami. W oparciu o równanie (4.30) mamy:.(4.31)

Reinhard Kulessa10 M S jest sumaryczną masą układu cząstek skupioną w środku masy,. W wyniku powtórnego różniczkowania równania (4.31) z uwzględnieniem r. (4.29) otrzymujemy.. Układ ciał porusza się tak jak jego środek masy, przy czym wszystkie siły zewnętrzne są przyłączone do środka masy. Jeśli suma sił zewnętrznych jest równa zero, środek masy porusza się ruchem jednostajnym prostoliniowym, lub spoczywa. Rozważmy nowy układ współrzędnych z początkiem w środku masy.

Reinhard Kulessa11 Sytuację tą możemy przedstawić na diagramie pędowym. p 1Si p 2Sf p 2Si p 1Sf Układ środka masy możemy przedstawić następująco: Zgodnie z r. (4.30) mamy, (4.33). Jeśli założymy, że nie działają siły zewnętrzne, to. m1m1 m2m2 r 2S rSrS r2r2 r1r1 r 1S L S

Reinhard Kulessa12 W nowym układzie prędkość środka masy znika.. W układzie środka masy całkowity pęd układu przed i po zderzeniu będzie równy zeru. Dwie zderzające się masy m 1 i m 2, będą w układzie środka masy miały pędy odpowiednio p 1S i p 2S. Dla pędów tych będzie przed zderzeniem zachodziła relacja;. W czasie zderzenia obydwie cząsteczki mogą zmienić prędkości, a tym samym pędu, zachowana jednak zostanie relacja;.

Reinhard Kulessa13 Równania będą miały postać;. Odejmując te równania stronami otrzymujemy;. Oznaczmy (4.34), gdzie nazywamy masą zredukowaną, wtedy.

Reinhard Kulessa14 Równanie to opisuje nam ruch względny dwóch mas pod wpływem oddziaływania wewnętrznego. Skorzystaliśmy tu z zależności:.(4.36) W oparciu o równanie (4.33) i (4.36) znajdujemy: (4.37). Wiedząc, że w układzie laboratoryjnym (patrz rysunek) otrzymujemy (korzystając z r.(4.30) ),

Reinhard Kulessa15. Z tych równań, jak również wprost z równania (4.37) otrzymujemy:. (4.38) Dla pędu ruchu względnego otrzymujemy:

Reinhard Kulessa16 (4.39). Analogicznie na energię kinetyczną otrzymamy;. (4.40) Zderzenia w układzie środka masy Omówmy przypadek zderzenia ciała o masie m 1 i prędkości v 1 ze spoczywającą w układzie laboratoryjnym cząstką o masie m 2. Ponieważ v 2 = 0, w oparciu o r. (4.30) otrzymujemy,.

Reinhard Kulessa17 p 2Si p 2Sf p 1Si p 1Sf Układ laboratoryjny Układ środka masy Jeśli w układzie środka masy zaznaczymy prędkości analogicznie jak pędy na prawym rysunku, to w oparciu o definicję pędu w układzie środka masy możemy napisać;. m2m2 m1m1 m2m2 S L m1m1 v 1i v 2Sf v 1Sf v 1f v 2f vSvS

18 Dla zderzenia elastycznego zachowana jest również energia kinetyczna. Dla układy środka masy możemy ją napisać następująco:. Z zasady zachowania pędu w układzie S podanej na poprzedniej stronie, mamy. Wstawiając to do poprzedniego równania otrzymujemy:

Reinhard Kulessa19 W oparciu o rysunek na stronie 11 możemy znaleźć związek pomiędzy prędkościami w układzie laboratoryjnym i w układzie środka masy.. vSvS v 1f v 1Sf L S vSvS v 1f v 1Sf S L ABC D W oparciu o prawy rysunek możemy napisać;.

Reinhard Kulessa20 Z zasady zachowania pędu (r. (4.31) ) możemy napisać:, bo v 2i = 0. Z transformacji prędkości pomiędzy układem L i S, mamy,. Możemy więc napisać:

Reinhard Kulessa21 Na zależność pomiędzy kątami rozproszenia w układzie laboratoryjnym L i w układzie środka masy S otrzymujemy:.(4.41) W przypadku zderzenia dwóch równych mas, mamy m 1 = m 2, czyli.