Wykład Równanie ciągłości Prawo Bernoulie’ego

Slides:



Advertisements
Podobne prezentacje
Wykład Temperatura termodynamiczna 6.4 Nierówność Clausiusa
Advertisements

Wykład Mikroskopowa interpretacja entropii
Wykład Prawo Coulomba W 1785 roku w oparciu o doświadczenia z ładunkami Charles Augustin Coulomb doszedł do trzech następujących wniosków dotyczących.
Wykład Prawo Coulomba W 1785 roku w oparciu o doświadczenia z ładunkami Charles Augustin Coulomb doszedł do trzech następujących wniosków dotyczących.
5.6 Podsumowanie wiadomości o polu elektrycznym
Wykład Prawo Gaussa w postaci różniczkowej E
Wykład Pole elektryczne i potencjał pochodzące od jednorodnie naładowanej nieprzewodzącej kuli W celu wyznaczenia natężenia posłużymy się prawem.
Wykład 9 7. Pojemność elektryczna
Wykład Gęstość energii pola elektrycznego
Wykład Przemiany gazu idealnego
Wykład Model przewodnictwa elektrycznego c.d
Wykład Zależność pomiędzy energią potencjalną a potencjałem
6.1 Energia potencjalna jednorodnie naładowanej kuli – jądro atomowe
Wykład 3 Opis ruchu 1.1 Zjawisko ruchu 1.2 Układy odniesienia
Wykład 24 Ruch falowy 11.1 Fala jednowymiarowa
Wykład Drgania wymuszone oscylatora Przypadek rezonansu
Wykład 4 2. Przykłady ruchu 1.5 Prędkość i przyśpieszenie c.d.
Wykład Ruch po okręgu Ruch harmoniczny
Wykład 19 Dynamika relatywistyczna
Wykład 21 Mechanika płynów 9.1 Prawo Archimedesa
Wykład 13 Ruch obrotowy Zderzenia w układzie środka masy
Wykład Procesy transportu 12. Niskie temperatury
Reinhard Kulessa1 Wykład Środek masy Zderzenie elastyczne z nieruchomą cząstką 4.4 Całkowity pęd układu cząstek przy działaniu sił
Wykład 20 Mechanika płynów 9.1 Prawo Archimedesa
Wykład Równania Maxwella Fale elektromagnetyczne
Reinhard Kulessa1 Wykład Środek masy Zderzenia w układzie środka masy Sprężyste zderzenie centralne cząstek poruszających się c.d.
Wykład Opis ruchu planet
Mechanika płynów.
FIZYKA dla studentów POLIGRAFII Wykład 9 Mechanika płynów
Zastosowanie funkcji eliptycznych w hydrodynamice
Płyny – to substancje zdolne do przepływu, a więc są to ciecze i gazy
Źródła ciepła i chłodu ĆWICZENIA PROJEKT. Źródła ciepła i chłodu Zadanie 1.
Wykład IX CIECZE.
Wykład 16 Ruch względny Bąki. – Precesja swobodna i wymuszona
Wykład 3 2. I zasada termodynamiki 2.1 Wstęp – rodzaje pracy
Wykład 24 Fale elektromagnetyczne 20.1 Równanie falowe
Wykład Równanie telegrafistów 20.4 Zjawisko naskórkowości.
Elektryczność i Magnetyzm II semestr r. akademickiego 2002/2003
Wykład 17 Ruch względny dla prędkości relatywistycznych
Wykład Impedancja obwodów prądu zmiennego c.d.
Wykład 22 Ruch drgający 10.1 Oscylator harmoniczny
Wykład 25 Fale płaskie c.d. Trójwymiarowe równanie różniczkowe fali
Wykład Materia w polu elektrycznym cd. pol
Wykład Równanie Clausiusa-Clapeyrona 7.6 Inne równania stanu
Wykład Opory ruchu -- Siły tarcia Ruch ciał w płynach
Wykład Moment pędu bryły sztywnej - Moment bezwładności
Wykład Energia pola indukcji magnetycznej Prądu zmienne
Wykład Zjawisko indukcji elektromagnetycznej
Wykład Spin i orbitalny moment pędu
Wykład Równania Maxwella Fale elektromagnetyczne
Temat: Prawo ciągłości
równanie ciągłości przepływu, równanie Bernoulliego.
Przykładowe zastosowania równania Bernoulliego i równania ciągłości przepływu 1. Pomiar ciśnienia Oznaczając S - punkt spiętrzenia (stagnacji) strugi v=0,
STATYKA PŁYNÓW 1. Siły działające w płynach Siły działające w płynach
Wykład 23 Ruch drgający 10.1 Oscylator harmoniczny
Prąd elektryczny Wiadomości ogólne Gęstość prądu Prąd ciepła.
MECHANIKA 2 Wykład Nr 11 Praca, moc, energia.
Podstawy mechaniki płynów - biofizyka układu krążenia
Elementy hydrodynamiki i aerodynamiki
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii.
Wykład Rozwinięcie potencjału znanego rozkładu ładunków na szereg momentów multipolowych w układzie sferycznym Rozwinięcia tego można dokonać stosując.
Trochę matematyki - dywergencja Dane jest pole wektora. Otoczymy dowolny punkt P zamkniętą powierzchnią A. P w objętości otoczonej powierzchnią A pole.
Trochę matematyki Przepływ cieczy nieściśliwej – zamrozimy ciecz w całej objętości z wyjątkiem wąskiego kanalika o stałym przekroju – kontur . Ciecz w.
POTENCJALNY OPŁYW WALCA
6. Ruch obrotowy W czystym ruchu obrotowym każdy punkt ciała sztywnego porusza się po okręgu, którego środek leży na osi obrotu (ruch wzdłuż linii prostej.
STATYKA I DYNAMIKA PŁYNÓW.
Prawa ruchu ośrodków ciągłych
Prawa ruchu ośrodków ciągłych
PODSTAWY MECHANIKI PŁYNÓW
Mechanika płynów Dynamika płynu doskonałego Równania Eulera
Zapis prezentacji:

Wykład 21 9.3.1 Równanie ciągłości 9.3.2 Prawo Bernoulie’ego 9.3.3 Zastosowanie równania ciągłości i prawo Bernoulie’ego 12-12-2008 Reinhard Kulessa

Rozważmy następującą sytuację. 9.3.1 Równanie ciągłości Rozważmy następującą sytuację. S1 S2 v1t v2t v1 v2 W czasie t przez przekroje S1 i S2 przepływają przepływają odpowiednio masy; . 12-12-2008 Reinhard Kulessa

Ze względu na to, że w zamkniętej przekrojami S1 i S2 objętości, masa musi być dla nieściśliwej cieczy stała, tyle samo masy musi wpływać co wypływać przez każdy z przekrojów, czyli m1 = m2 . Wynika stąd, że (9.2) . Możemy również podejść do równania ciągłości rozważając procesy transportu, w naszym przypadku masy. Wprowadźmy pojęcie strumienia gęstości masy j jako stosunek ilości masy przepływającej na jednostkę czasu przez powierzchnię S; . (9.3) W przypadku przez nas omawianym istnieje potencjał prędkości . Prędkość cieczy definiujemy jako; 12-12-2008 Reinhard Kulessa

. (9.4) 2 1 > 2 1 masa m v grad  Równanie ciągłości możemy podać rozważając strumień gęstości masy przepływający przez zamkniętą powierzchnię. , Gdzie dS jest wektorem reprezentującym element powierzchni prostopadłym do tej powierzchni. Jeżeli wewnątrz powierzchni nie mamy dodatkowego źródła masy, 12-12-2008 Reinhard Kulessa

W oparciu o twierdzenie Gaussa możemy napisać, wtedy dm/dt =0. W oparciu o twierdzenie Gaussa możemy napisać, , gdzie dV jest elementem objętości. Otrzymujemy więc bezpośrednio, ze względu na to że =const, . (9.5) Jest to inna postać równania ciągłości. 12-12-2008 Reinhard Kulessa

Rozważmy sytuację na rysunku. 9.3.2 Prawo Bernoulie’ego Z równania ciągłości wynika, że każdy element objętości przesuwając się z lewa na prawo doznaje pewnego przyśpieszenia. Zgodnie z II prawem Newtona źródłem tego przyśpieszenia musi być pewna siła. Co to jest za siła? Rozważmy sytuację na rysunku. x x+dx p(x) p(x+dx) dV F(x)=p(x)·S F(x+dx)=p(x+dx)·S S p(x) oznacza ciśnienie hydrostatyczne. Wypadkowa siła w kierunku x (w prawo) wynosi; 12-12-2008 Reinhard Kulessa

Ze względów symetrii wszystkie inne siły się równoważą. Znak minus oznacza, że siła jest skierowana w stronę malejącego ciśnienia. Ze względów symetrii wszystkie inne siły się równoważą. Siłę uzyskaliśmy więc przez zróżniczkowanie ciśnienia, analogicznie jak wyliczyliśmy ją poprzednio z energii potencjalnej. Ciśnienie ma wymiar energii na jednostkę objętości. Możemy dla elementu masy m napisać równanie ruchu Newtona; . 12-12-2008 Reinhard Kulessa

Poprzednie równanie możemy zapisać jako; (9.6) . Równanie (9.6) przedstawia Prawo Pascala. W czasie przesuwania się elementu masy dm = dV z odległości x1 do x2 siła Fx wykonuje na tym elemencie prace . Zgodnie z zasadą zachowania energii praca ta zwiększa energię kinetyczną z wartości do wartości , czyli . 12-12-2008 Reinhard Kulessa

W oparciu o równanie (9.1) możemy napisać; Oznacza to, że; . (9.7) Równanie (9.7) określa prawo Bernoulie’ego. 9.3.3 Zastosowanie równania ciągłości i prawa Bernoulie’ego A). Przykładem może być działanie skrzydła samolotu. p1,v1 p2,v2 12-12-2008 Reinhard Kulessa

Ze względu na różnicę ciśnień pomiędzy górną a dolną powierzchnią skrzydła powstaje siła nośna skierowana ku górze. . Średnią wartość prędkości nad skrzydłem i pod skrzydłem możemy przyjąć jako prędkość samolotu v. Wtedy siła F jest dana prawem Kutta-Joukowskiego: . 12-12-2008 Reinhard Kulessa

B).Rurka Pitot’a – pomiar prędkości dynamicznej patm+ pdyn Rurka pitot’a mierzy różnicę pomiędzy ciśnieniem całkowitym a statycznym. C). Rurka Prandtla – pomiar prędkości dynamicznej pdyn 12-12-2008 Reinhard Kulessa

D). Działanie spryskiwacza pow. E).Efekt Magnusa F v  Poprzednio badaliśmy również opór stawiany przez ciecz formułując Prawo Stokesa. Pamiętamy również definicję liczby Reynoldsa. Wielkość siły F na jednostkę długości cylindra o promieniu R jest równa . 12-12-2008 Reinhard Kulessa