6.1 Energia potencjalna jednorodnie naładowanej kuli – jądro atomowe

Slides:



Advertisements
Podobne prezentacje
Wykład Temperatura termodynamiczna 6.4 Nierówność Clausiusa
Advertisements

Wykład Rozwinięcie potencjału znanego rozkładu ładunków
Wykład Mikroskopowa interpretacja entropii
Wykład Prawo Coulomba W 1785 roku w oparciu o doświadczenia z ładunkami Charles Augustin Coulomb doszedł do trzech następujących wniosków dotyczących.
Wykład Prawo Coulomba W 1785 roku w oparciu o doświadczenia z ładunkami Charles Augustin Coulomb doszedł do trzech następujących wniosków dotyczących.
5.6 Podsumowanie wiadomości o polu elektrycznym
Wykład Prawo Gaussa w postaci różniczkowej E
Wykład Pole elektryczne i potencjał pochodzące od jednorodnie naładowanej nieprzewodzącej kuli W celu wyznaczenia natężenia posłużymy się prawem.
Wykład 9 7. Pojemność elektryczna
Wykład Gęstość energii pola elektrycznego
Wykład Model przewodnictwa elektrycznego c.d
Wykład Zależność pomiędzy energią potencjalną a potencjałem
Wykład 3 Opis ruchu 1.1 Zjawisko ruchu 1.2 Układy odniesienia
Wykład 24 Ruch falowy 11.1 Fala jednowymiarowa
Wykład Drgania wymuszone oscylatora Przypadek rezonansu
Wykład 4 2. Przykłady ruchu 1.5 Prędkość i przyśpieszenie c.d.
Wykład Ruch po okręgu Ruch harmoniczny
Wykład 19 Dynamika relatywistyczna
Wykład 12 8 Zastosowanie termodynamiki statystycznej
Wykład Równanie ciągłości Prawo Bernoulie’ego
Wykład 13 Ruch obrotowy Zderzenia w układzie środka masy
Reinhard Kulessa1 Wykład Środek masy Zderzenie elastyczne z nieruchomą cząstką 4.4 Całkowity pęd układu cząstek przy działaniu sił
Wykład Efekt Dopplera Znaczenie ośrodka
Wykład Równania Maxwella Fale elektromagnetyczne
Reinhard Kulessa1 Wykład Środek masy Zderzenia w układzie środka masy Sprężyste zderzenie centralne cząstek poruszających się c.d.
Wykład Opis ruchu planet
FIZYKA dla studentów POLIGRAFII Elektrostatyka
Tajemniczy świat atomu
Elektrostatyka w przykładach
ELEKTROSTATYKA II.
ATOM WODORU, JONY WODOROPODOBNE; PEŁNY OPIS
WYKŁAD 6 ATOM WODORU W MECHANICE KWANTOWEJ (równanie Schrődingera dla atomu wodoru, separacja zmiennych, stan podstawowy 1s, stany wzbudzone 2s i 2p,
ELEKTROSTATYKA I.
Wykład 16 Ruch względny Bąki. – Precesja swobodna i wymuszona
Wykład Półprzewodniki Pole magnetyczne
Wykład 3 2. I zasada termodynamiki 2.1 Wstęp – rodzaje pracy
Wykład 24 Fale elektromagnetyczne 20.1 Równanie falowe
Wykład Równanie telegrafistów 20.4 Zjawisko naskórkowości.
Elektryczność i Magnetyzm II semestr r. akademickiego 2002/2003
Wykład 17 Ruch względny dla prędkości relatywistycznych
Wykład Impedancja obwodów prądu zmiennego c.d.
Wykład 22 Ruch drgający 10.1 Oscylator harmoniczny
Wykład 25 Fale płaskie c.d. Trójwymiarowe równanie różniczkowe fali
5.5 Mikro- i makrostany oraz prawdopodobieństwo termodynamiczne cd.
Wykład Materia w polu elektrycznym cd. pol
Wykład Równanie Clausiusa-Clapeyrona 7.6 Inne równania stanu
Wykład Zależność oporu metali od temperatury.
Wykład Moment pędu bryły sztywnej - Moment bezwładności
Wykład Energia pola indukcji magnetycznej Prądu zmienne
Wykład Zjawisko indukcji elektromagnetycznej
Wykład Spin i orbitalny moment pędu
Wykład Praca Praca zdefiniowana jest jako ilość energii dostarczanej przez siłę działającą na pewnej drodze i matematycznie jest zapisana jako: (1.1)
Wykład Równania Maxwella Fale elektromagnetyczne
Wykład 2 4. Ładunki elektryczne
Wykład 23 Ruch drgający 10.1 Oscylator harmoniczny
MECHANIKA NIEBA WYKŁAD r.
Wykład 6 Elektrostatyka
MECHANIKA 2 Wykład Nr 11 Praca, moc, energia.
Politechnika Rzeszowska
MECHANIKA 2 Wykład Nr 10 MOMENT BEZWŁADNOŚCI.
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Elektrostatyka.
Wykład Rozwinięcie potencjału znanego rozkładu ładunków na szereg momentów multipolowych w układzie sferycznym Rozwinięcia tego można dokonać stosując.
Reinhard Kulessa1 Wykład Ruch rakiety 5 Ruch obrotowy 5.1 Zachowanie momentu pędu dla ruchu obrotowego punktu materialnego Wyznaczanie środka.
Niech f(x,y,z) będzie ciągłą, różniczkowalną funkcją współrzędnych. Wektor zdefiniowany jako nazywamy gradientem funkcji f. Wektor charakteryzuje zmienność.
Budowa atomu Poglądy na budowę atomu. Model Bohra. Postulaty Bohra
Trochę matematyki - dywergencja Dane jest pole wektora. Otoczymy dowolny punkt P zamkniętą powierzchnią A. P w objętości otoczonej powierzchnią A pole.
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
ELEKTROSTATYKA.
Zapis prezentacji:

6.1 Energia potencjalna jednorodnie naładowanej kuli – jądro atomowe Wykład 8 6.1 Energia potencjalna jednorodnie naładowanej kuli – jądro atomowe Jednorodnie naładowana kula ma następujący rozkład gęstości: Wystartujmy z równania Poissona. Ze względu na symetrię sferyczną omawianego problemu 13 ma rca 2003 Reinhard Kulessa

Potencjał którego szukamy zależy tylko od r. Równanie Poissona w układzie sferycznym ma postać: (6.12) Rozważmy najpierw przypadek rR dla którego (r) =0. Rozwiązanie równania Poissona da wynik: W celu wyznaczenia stałej C1 posłużmy się prawem Gaussa; 13 ma rca 2003 Reinhard Kulessa

Otoczmy naładowaną kulę czaszą kulistą o promieniu R’ Promień kuli R < R’. Zgodnie z Prawem Gaussa mamy: R’ Korzystając z faktu, że na granicy naładowanej kuli i obszaru nie naładowanego natężenie pola powinno być ciągłe, mamy: Wiedząc, że 13 ma rca 2003 Reinhard Kulessa

Otrzymujemy więc wartość stałej . Możemy więc przystąpić do drugiego całkowania co daje nam; Ponieważ dla V0 gdy r musi być C2=0. Potencjał w odległości r od jednorodnie naładowanej kuli jest więc równa: (6.13) Zajmiemy się teraz drugim przypadkiem dla rR, gdzie (r) = 0. 13 ma rca 2003 Reinhard Kulessa

Musimy więc scałkować równanie (6.12). Pierwsze całkowanie daje po krótkich przekształceniach: Drugie całkowanie daje: Ze względu na to, że potencjał V(r) dla r0 powinien mieć skończoną wartość, wynika, że C3=0. 13 ma rca 2003 Reinhard Kulessa

Otrzymujemy więc na potencjał dla r  R wyrażenie: Zakładając, że mamy do czynienia z jądrem o Z protonach możemy do ostatniego wzoru wstawić wyrażenie na gęstość ładunku: , otrzymamy wtedy: Stałą C4 policzymy wiedząc, że potencjał dla r  R i r  R musi dla r=R być taki sam. Mamy wtedy, korzystając m.in. z wzoru (6.13) : Otrzymujemy więc na potencjał dla r  R wyrażenie: 13 ma rca 2003 Reinhard Kulessa

(6.14) Poniższy rysunek podaje przebieg potencjału w odległości r od jednorodnie naładowanej kuli o promieniu R. V Jest to dobre przybliżenie potencjału jądra atomowego stosowane m.in. w rozproszeniu sprężystym protonów na jądrze atomowym parabola hiperbola r R 13 ma rca 2003 Reinhard Kulessa

6.2 Energia kulombowska jądra atomowego Energię tą otrzymamy w oparciu o wzór (6.6) wstawiając do niego otrzymany właśnie wyrażenie na potencjał (6.14) pochodzący od jednorodnie naładowanej kuli. Obliczenie wykonamy we współrzędnych sferycznych. Wtedy: Po uproszczeniach i wstawieniu wyrażenia na 0 otrzymujemy: (6.15) 13 ma rca 2003 Reinhard Kulessa

We wzorze (6.6) uwzględniane są oddziaływania pomiędzy wszystkimi ładunkami. Musimy więc odjąć odjąć energie własne wszystkich protonów, które mają ładunek Z=1, czyli Energia kulombowska jądra jest więc równa różnicy wartości podanej we wzorze (6.15) i powyższej wartości. Na energie kulombowską jądra atomowego otrzymujemy więc wartość: (6.16) W oparciu o ten wzór można oszacować promień jądra w przypadku jąder zwierciadlanych, czyli takich dla których A1=A2 , Z1=N2 i Z2=N1. 13 ma rca 2003 Reinhard Kulessa

Na wartość promienia otrzymujemy: Weźmy dla przykładu dwa jądra zwierciadlane i . Różnica energii kulombowskich tych jąder jest równa; Otrzymujemy po podstawieniu wartości E=8.64/R [MeV]. Doświadczalnie zmierzona różnica energii (różnica mas) dla podanych jąder wynosi E=2.786 MeV. Możemy stąd wyznaczyć wartość promienia jądra o liczbie masowej A=11. Na wartość promienia otrzymujemy: Jakie z tych rozważań możemy wyciągnąć wnioski? 13 ma rca 2003 Reinhard Kulessa

Możemy te rozważania uważać za potwierdzenie praw elektrostatyki dla zjawisk na odległościach r10-13 cm, mimo, że oceniona wartość promienia jest ok.. 15% większa niż otrzymana innymi metodami. W naszych ocenach nie uwzględniliśmy pewnych efektów, które należy rozważać na gruncie mechaniki kwantowej. Drugi wniosek wychodzący poza elektrostatykę to fakt, że zaniedbanie różnicy oddziaływań silnych n-p, p-p i p-n daje mały wpływ na promień jądra , co oznacza niezależność ładunkową oddziaływań silnych. Fakt ten w naszym przypadku jest potwierdzony przez bardzo dobrą zgodność poziomów energetycznych energetycznych rozważanych jąder zwierciadlanych. 13 ma rca 2003 Reinhard Kulessa

7.99 7.50 7.30 6.81 6.90 6.76 6.49 6.35 5.03 4.81 4.46 4.32 2.14 2.00 13 ma rca 2003 Reinhard Kulessa

6.3 Klasyczny promień elektronu Wzór (6.15) podający energię kulombowską jednorodnie naładowanej kuli, możemy wykorzystać do oszacowania tzw. „klasycznego promienia elektronu”. Załóżmy, że elektron jest kulką o promieniu R jednorodnie wypełniony ładunkiem Q. Oszacowania tego dokonamy przyrównując Energię kulombowską elektronu, do energii jego masy spoczynkowej. Otrzymamy wtedy: Jeżeli elektron byłby kulą o promieniu R lecz przewodzącą, to ładunek skupiłby się na powierzchni, wtedy; 13 ma rca 2003 Reinhard Kulessa

Jako klasyczny promień elektronu definiuje się jako: Mamy więc niepewność dotyczącą rozłożenia ładunku w elektronie. Doświadczenie wskazuje jednak, że aż do rozmiarów 10-18 w procesie anihilacji e+ - e- cząstki te są punktowe. Jako klasyczny promień elektronu definiuje się jako: Powyższa wielkość jest właściwie oceną obszaru w którym znajduje się ładunek elektronu, a nie promienia elektronu. 13 ma rca 2003 Reinhard Kulessa

Energię własną dipola możemy prosto policzyć w oparciu o wzór (6.5). 6.4 Energia własna dipola Energię własną dipola możemy prosto policzyć w oparciu o wzór (6.5). Ładunek ujemny znajduje się w potencjale ładunku dodatniego +Q . L Ładunek dodatni znajduje się w potencjale ładunku ujemnego -Q . Na energię elektrostatycznnna dipola otrzymujemy: 13 ma rca 2003 Reinhard Kulessa

Energia ta zmienia się w sposób monotoniczny i nie ma ekstremów Energia ta zmienia się w sposób monotoniczny i nie ma ekstremów. Układ ten jest stabilny tylko wtedy, gdy ładunki pozostają w stałej odległości od siebie. 13 ma rca 2003 Reinhard Kulessa

6.5 Energia elektrostatyczna kryształu jonowego Rozważmy jako przykład kryształ soli kuchennej NaCl. Dodatnie jony sodu i ujemne jony chloru tworzą regularną kubiczną sieć krystaliczną w którym jony te są ułożone naprzemiennie tak jak na poniższym rysunku. Doświadczalna energia rozdzielenia kryształu NaCl na jony Na+ i Cl- wynosi 7.92 eV. Cl 281 Å Na 1 eV = 1.602 10-19 J Energia rozdzielenia jednego mola (N=6.02 1023 cząstek) wynosi W= 7.64 105 J/mol = 183 kcal/mol. 13 ma rca 2003 Reinhard Kulessa

Musimy zsumować przyczynki pochodzące od wszystkich jonów. Czy możemy tą energie policzyć? Zgodnie z naszą teorią praca ta jest sumą energii potencjalnych wszystkich par jonów. A energia jednej pary jonów wynosi Energia ta wynosi 5.12 eV. Musimy zsumować przyczynki pochodzące od wszystkich jonów. Zaczynając od środkowego jonu Na+ otrzymujemy: Na+ 13 ma rca 2003 Reinhard Kulessa

Wynik ten jest 10% większy od doświadczalnego Wynik ten jest 10% większy od doświadczalnego. Jednak nasze przypuszczenie że sieć krystaliczna jest utrzymywana w całości przez siły kulombowskie jest słuszna. Różnica pomiędzy wielkością obliczoną a doświadczalna bierze się z nieuwzględnienia sił odpychających, które rosną gdy r maleje, oraz od innych przyczynków. 13 ma rca 2003 Reinhard Kulessa